Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts
Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts
-
摘要: Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.
Results show that KR melts rapidly and completely within 50 ℃ of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.
Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.Abstract: Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.
Results show that KR melts rapidly and completely within 50 ℃ of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.
Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.