Maximum depositional age estimation revisited

Pieter Vermeesch

Pieter Vermeesch. Maximum depositional age estimation revisited[J]. 地学前缘, 2021, 12(2): 843-850. DOI: 10.1016/j.gsf.2020.08.008
引用本文: Pieter Vermeesch. Maximum depositional age estimation revisited[J]. 地学前缘, 2021, 12(2): 843-850. DOI: 10.1016/j.gsf.2020.08.008
Pieter Vermeesch. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2): 843-850. DOI: 10.1016/j.gsf.2020.08.008
Citation: Pieter Vermeesch. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2): 843-850. DOI: 10.1016/j.gsf.2020.08.008

Maximum depositional age estimation revisited

基金项目: 

P.V. would like to thank George Gehrels, Peter Copeland and Daniel Coutts for constructive reviews that significantly improved the paper. This research was supported by NERC standard grant #NE/T001518/1 (‘Beyond Isoplot’).

详细信息
    通讯作者:

    Pieter Vermeesch,E-mail:p.vermeesch@ucl.ac.uk

Maximum depositional age estimation revisited

Funds: 

P.V. would like to thank George Gehrels, Peter Copeland and Daniel Coutts for constructive reviews that significantly improved the paper. This research was supported by NERC standard grant #NE/T001518/1 (‘Beyond Isoplot’).

  • 摘要: In a recent review published in this journal, Coutts et al. (2019) compared nine different ways to estimate the maximum depositional age (MDA) of siliclastic rocks by means of detrital geochronology. Their results show that among these methods three are positively and six negatively biased. This paper investigates the cause of these biases and proposes a solution to it. A simple toy example shows that it is theoretically impossible for the reviewed methods to find the correct depositional age in even a best case scenario: the MDA estimates drift to ever smaller values with increasing sample size. The issue can be solved using a maximum likelihood model that was originally developed for fission track thermochronology by Galbraith and Laslett (1993). This approach parameterises the MDA estimation problem with a binary mixture of discrete and continuous distributions. The ‘Maximum Likelihood Age’ (MLA) algorithm converges to a unique MDA value, unlike the ad hoc methods reviewed by Coutts et al. (2019). It successfully recovers the depositional age for the toy example, and produces sensible results for realistic distributions. This is illustrated with an application to a published dataset of 13 sandstone samples that were analysed by both LA-ICPMS and CA-TIMS U-Pb geochronology. The ad hoc algorithms produce unrealistic MDA estimates that are systematically younger for the LA-ICPMS data than for the CA-TIMS data. The MLA algorithm does not suffer from this negative bias. The MLA method is a purely statistical approach to MDA estimation. Like the ad hoc methods, it does not readily accommodate geological complications such as post-depositional Pb-loss, or analytical issues causing erroneously young outliers. The best approach in such complex cases is to re-analyse the youngest grains using more accurate dating techniques. The results of the MLA method are best visualised on radial plots. Both the model and the plots have applications outside detrital geochronology, for example to determine volcanic eruption ages.
    Abstract: In a recent review published in this journal, Coutts et al. (2019) compared nine different ways to estimate the maximum depositional age (MDA) of siliclastic rocks by means of detrital geochronology. Their results show that among these methods three are positively and six negatively biased. This paper investigates the cause of these biases and proposes a solution to it. A simple toy example shows that it is theoretically impossible for the reviewed methods to find the correct depositional age in even a best case scenario: the MDA estimates drift to ever smaller values with increasing sample size. The issue can be solved using a maximum likelihood model that was originally developed for fission track thermochronology by Galbraith and Laslett (1993). This approach parameterises the MDA estimation problem with a binary mixture of discrete and continuous distributions. The ‘Maximum Likelihood Age’ (MLA) algorithm converges to a unique MDA value, unlike the ad hoc methods reviewed by Coutts et al. (2019). It successfully recovers the depositional age for the toy example, and produces sensible results for realistic distributions. This is illustrated with an application to a published dataset of 13 sandstone samples that were analysed by both LA-ICPMS and CA-TIMS U-Pb geochronology. The ad hoc algorithms produce unrealistic MDA estimates that are systematically younger for the LA-ICPMS data than for the CA-TIMS data. The MLA algorithm does not suffer from this negative bias. The MLA method is a purely statistical approach to MDA estimation. Like the ad hoc methods, it does not readily accommodate geological complications such as post-depositional Pb-loss, or analytical issues causing erroneously young outliers. The best approach in such complex cases is to re-analyse the youngest grains using more accurate dating techniques. The results of the MLA method are best visualised on radial plots. Both the model and the plots have applications outside detrital geochronology, for example to determine volcanic eruption ages.
  • [1]

    Barbeau, L., David, Olivero, E.B., Swanson-Hysell, N.L., Zahid, K.M., Murray, K.E., Gehrels, G.E., 2009. Detrital-zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth Planet Sci. Lett. 284 (3-4), 489-503. https://doi.org/10.1016/j.epsl.2009.05.014.

    [2]

    Chen, W.-S., Huang, Y.-C., Liu, C.-H., Feng, H.-T., Chung, S.-L., Lee, Y.-H., 2016. U-Pb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics 686, 68-81. https://doi.org/10.1016/j.tecto.2016.07.021.

    [3]

    Cherniak, D., Watson, E., 2001. Pb diffusion in zircon. Chem. Geol. 172 (1-2), 5-24.

    [4]

    Copeland, P., 2020. On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Res. https://doi.org/10.1111/BRE.12441.

    [5]

    Coutts, D.S., Matthews, W.A., Hubbard, S.M., 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci. Front. 10 (4), 1421-1435.

    [6]

    Dickinson, W., Gehrels, G., 2009. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: evidence for transcontinental dispersal and intraregional recycling of sediment. Geol. Soc. Am. Bull. 121, 408-433.https://doi.org/10.1130/B26406.1.

    [7]

    Galbraith, R.F., 1990. The radial plot: graphical assessment of spread in ages. Nucl. Tracks Radiat. Meas. 17, 207-214.

    [8]

    Galbraith, R.F., Green, P.F., 1990. Estimating the component ages in a finite mixture.Nucl. Tracks Radiat. Meas. 17, 197-206.

    [9]

    Galbraith, R.F., 2005. Statistics for Fission Track Analysis. CRC Press.Galbraith, R., 1988. Graphical display of estimates having differing standard errors.Technometrics 30 (3), 271-281.

    [10]

    Galbraith, R., Laslett, G., 1993. Statistical models for mixed fission track ages. Nucl.Tracks Radiat. Meas. 21 (4), 459-470.

    [11]

    Gehrels, G., 2003. AgePick. https://sites.google.com/a/laserchron.org/laserchron/home/Last. (Accessed 5 June 2020).

    [12]

    Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W., Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., Lepre, C., 2020. LA-ICPMS U-Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona). Geochronology 2, 257-282.

    [13]

    Herriott, T.M., Crowley, J.L., Schmitz, M.D., Wartes, M.A., Gillis, R.J., 2019. Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology 47 (11), 1044-1048.

    [14]

    Keller, C.B., Schoene, B., Samperton, K.M., 2018. A stochastic sampling approach to zircon eruption age interpretation. Geochem. Perspect. Lett. 8, 31-35. https://doi.org/10.7185/geochemlet.1826.

    [15]

    Ludwig, K.R., 1998. On the treatment of concordant uranium-lead ages. Geochem.Cosmochim. Acta 62, 665-676. https://doi.org/10.1016/S0016-7037(98)00059-3.

    [16]

    Ludwig, K., Mundil, R., 2002. Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochem. Cosmochim. Acta 66, A463.

    [17]

    Ludwig, K.R., 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel, vol. 4. Berkeley Geochronology Center, Special Publication.

    [18]

    Nelson, D.R., 2001. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons. Sediment.Geol. 141, 37-60.

    [19]

    Nemchin, A.A., Cawood, P.A., 2005. Discordance of the U-Pb system in detrital zircons:implication for provenance studies of sedimentary rocks. Sediment. Geol. 182, 143-162. https://doi.org/10.1016/j.sedgeo.2005.07.011.

    [20]

    Rasmussen, C., Mundil, R., Irmis, R.B., Geisler, D., Gehrels, G.E., Olsen, P.E., Kent, D.V., Lepre, C., Kinney, S.T., Geissman, J.W., Parker, W.G., 2020. U-Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation(Petrified Forest National Park, Arizona, USA): implications for Late Triassic paleoecological and paleoenvironmental change. GSA Bulletin. https://doi.org/10.1130/B35485.1.

    [21]

    Ross, J.B., Ludvigson, G.A., Möller, A., Gonzalez, L.A., Walker, J., 2017. Stable isotope paleohydrology and chemostratigraphy of the Albian Wayan Formation from the wedge-top depozone, North American Western Interior Basin. Sci. China Earth Sci. 60(1), 44-57.

    [22]

    Sambridge, M.S., Compston, W., 1994. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci. Lett. 128, 373-390.https://doi.org/10.1016/0012-821X(94)90157-0.

    [23]

    Titterington, D.M., Halliday, A.N., 1979. On the fitting of parallel isochrons and the method of maximum likelihood. Chem. Geol. 26, 183-195.

    [24]

    Tucker, R.T., Roberts, E.M., Hu, Y., Kemp, A.I., Salisbury, S.W., 2013. Detrital zircon age constraints for the Winton Formation, Queensland: contextualizing Australia’s Late Cretaceous dinosaur faunas. Gondwana Res. 24 (2), 767-779.

    [25]

    van der Touw, J., Galbraith, R., Laslett, G., 1997. A logistic truncated normal mixture model for overdispersed binomial data. J. Stat. Comput. Simulat. 59 (4), 349-373.

    [26]

    Vermeesch, P., 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat. Meas. 44 (4), 409-410.

    [27]

    Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312-313, 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021.

    [28]

    Vermeesch, P., 2018a. Dissimilarity measures in detrital geochronology. Earth Sci. Rev. 178, 310-321. https://doi.org/10.1016/j.earscirev.2017.11.027.

    [29]

    Vermeesch, P., 2018b. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479-1493.

    [30]

    York, D., Evensen, N.M., Martínez, M.L., De Basabe Delgado, J., 2004. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 72(3), 367-375.

    [31]

    Zhang, X., Pease, V., Skogseid, J., Wohlgemuth-Ueberwasser, C., 2016. Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U-Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula. GSA Bulletin 128 (1-2), 29-46.

  • 期刊类型引用(161)

    1. Lockie, J., Ielpi, A., Pehrsson, S.J. et al. Detrital zircon geochronology of the Paleoproterozoic Nonacho Basin (Northwest Territories, Canada): A record of post-collisional collapse amid supercontinent aggregation. Precambrian Research, 2025, 420: 107731. 必应学术
    2. Rong, Y.-W., Zhu, W.-B., Wang, X. et al. Paleoproterozoic orogenic event in the western North China Craton: Insights from zircon U-Pb-Lu-Hf isotopes and geochemistry of meta-supracrustal rocks in the Beidashan complex, Alxa block. Precambrian Research, 2025, 419: 107728. 必应学术
    3. Khan, W., Wang, L., Garzanti, E. et al. Decoding the Ediacaran Enigma: Gondwana paleogeography revisited through a provenance study of the Salt Range Formation (Salt Range, western Himalayas, Pakistan). Gondwana Research, 2025, 140: 244-263. 必应学术
    4. George, S.W.M., Carrapa, B., DeCelles, P.G. et al. Increased moisture availability in the Central Andes during the Miocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 663: 112732. 必应学术
    5. Hu, L., Yang, J., Du, Y. et al. Provenance of the Nantuo Formation in the Shennongjia region: Implications for the paleogeographic position of South China in Rodinia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 663: 112793. 必应学术
    6. Lockie, J., Ielpi, A., Canam, R. et al. Orogenic unroofing of the Taltson and Thelon orogens depicted through detrital zircon geochronology of the Sosan Group, Great Slave Lake Supergroup (Northwest Territories, Canada). Precambrian Research, 2025, 419: 107706. 必应学术
    7. Locher, V., Popa, R.-G., Guillong, M. et al. Insights into caldera cycles obtained from the eruption ages and chemistry of the youngest products of Nisyros volcano, South Aegean Arc. Journal of Volcanology and Geothermal Research, 2025, 460: 108281. 必应学术
    8. Liu, M., Liu, X., Wu, H. et al. Origin and evolution of the Qiangtang block, northern Tibetan Plateau: New insights from detrital zircon U-Pb geochronology and Lu-Hf isotopic compositions. Journal of Asian Earth Sciences, 2025, 281: 106499. 必应学术
    9. Madronich, L.I., Matthews, W.A., Hadlari, T. et al. Detrital zircons from Cambrian rocks of western Laurentia define two episodes of Rodinian rift-related magmatism. Geoscience Frontiers, 2025, 16(2): 102007. 必应学术
    10. Cisneros de León, A., Schmitt, A.K., Mittal, T. et al. Comment on “A Bayesian age from dispersed plagioclase and zircon dates in the Los Chocoyos ash, Central America” byBaudry et al. (2024). Earth and Planetary Science Letters, 2025, 653: 119214. 必应学术
    11. Regier, N.A., Horton, B.K., Starck, D. et al. Sediment provenance and depositional systems during Paleozoic tectonic and climatic transitions in the eastern Precordillera of Argentina. Gondwana Research, 2025, 139: 179-203. 必应学术
    12. Callegari, R., Mazur, S., McClelland, W.C. et al. Middle Cambrian convergence at the southwestern Baltica margin, Holy Cross Mts., Poland, and its significance for reconstructions of early Gondwana. Geoscience Frontiers, 2025, 16(2): 101972. 必应学术
    13. Jagoe, L., Turienzo, M., Sagripanti, L. et al. Structural style of the Guañacos Fold and Thrust Belt (southern Central Andes): A tectonic setting for the Cura Mallín Basin revisited. Tectonophysics, 2025, 897: 230611. 必应学术
    14. Martinez, P.R., Carrapa, B., Clementz, M.T. et al. Controls on late Miocene marine vertebrate bonebed genesis in northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 659: 112622. 必应学术
    15. Howard, B.L., Sharman, G.R., Crowley, J.L. et al. The leaky chronometer: Evidence for systematic cryptic Pb loss in laser ablation U-Pb dating of zircon relative to CA-TIMS. Terra Nova, 2025, 37(1): 19-25. 必应学术
    16. Das, M., Anfinson, O., Rowe, C. et al. Age, sedimentology, and deformational history of the Mesozoic Franciscan accretionary complex, Angel Island, California, USA. Bulletin of the Geological Society of America, 2025, 137(1-2): 351-373. 必应学术
    17. León, S., Parra, M., Mateo Marulanda, U. et al. Tectonostratigraphic evolution of a marginal basin during the transition from arc collision to subduction: The case of the northern Pacific forearc of Colombia. Bulletin of the Geological Society of America, 2025, 137(1-2): 790-809. 必应学术
    18. Gao, S., Xu, Z., Xie, C. et al. Late Triassic sedimentary environments and detrital zircon provenance analysis in the Amdo area of the Tibetan Plateau: Implications for the evolution of the Meso-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 657: 112601. 必应学术
    19. Ma, A., Hu, X., Garzanti, E. et al. Diachronous Cretaceous Closure of the Bangong-Nujiang-Shyok Ocean (Westernmost Central Tibet). Tectonics, 2024, 43(12): e2024TC008280. 必应学术
    20. Jamali Ashtiani, R., Schmitt, A.K., Hassanzadeh, J. et al. Permian flood basalt protoliths for Jurassic amphibolites and eclogites in SW Iran: Implications for subduction of a magma-rich passive margin. Lithos, 2024, 488-489: 107811. 必应学术
    21. Reiser, M.K., Schuster, R., Iglseder, C. et al. Geochronology, geochemistry, and geological evolution of the Troiseck-Floning and Rosskogel nappes (Eastern Alps): unraveling parallels between the Eastern Alps and Western Carpathians. Swiss Journal of Geosciences, 2024, 117(1): 11. 必应学术
    22. Moles, N.R., Cooper, M.R., Hollis, S.P. et al. Provenance of the Trainor’s Rocks microconglomerate, Northern Ireland: a mid-Silurian (Hawick Group) submarine channel fan deposit in the closing Iapetus Ocean. Journal of the Geological Society, 2024, 181(6): jgs2024-025. 必应学术
    23. Custódio, M.A., Roddaz, M., Santos, R.V. et al. Maastrichtian-Cenozoic erosional history of the northern Peruvian Amazonian Andes implications for the Eastern Cordillera evolution (Huallaga Basin, northern Peru). Global and Planetary Change, 2024, 242: 104584. 必应学术
    24. Romero, M.C., Orme, D.A., Surpless, K.D. et al. AGE AND PROVENANCE RELATIONSHIPS BETWEEN THE BASAL GREAT VALLEY GROUP AND ITS UNDERLYING BASEMENT: IMPLICATIONS FOR INITIATION OF THE GREAT VALLEY FOREARC BASIN, CALIFORNIA, U.S.A.. Journal of Sedimentary Research, 2024, 94(5): 641-662. 必应学术
    25. Tye, A., Schoenbohm, L. Long-term stability of sediment routing on an active continental margin: Insights from detrital zircon U-Pb ages and measured stratigraphy of Carboniferous to Miocene strata, Sierra de Narváez, NW Argentina. Journal of South American Earth Sciences, 2024, 146: 105097. 必应学术
    26. West, C.K., Reichgelt, T., Reyes, A.V. et al. Paleobotanical Evidence for Mediterranean Climates in the Western Canadian Paleoarctic During the Late Middle Eocene. Paleoceanography and Paleoclimatology, 2024, 39(10): e2024PA004874. 必应学术
    27. Jamaliashtiani, R., Scherer, E.E., Schmitt, A.K. et al. Lu-Hf and U-Pb dating of the Zayanderud eclogites: Implications for Jurassic subduction initiation along the Neotethys margin in Iran. Lithos, 2024, 482-483: 107742. 必应学术
    28. Guerrero, D., Reimold, W.U., Hauser, N. et al. Zircon U-Pb provenance analysis of impact melt and target rocks from the Rochechouart impact structure, France. Meteoritics and Planetary Science, 2024, 59(10): 2718-2743. 必应学术
    29. Baudry, A., Singer, B.S., Jicha, B. et al. A Bayesian age from dispersed plagioclase and zircon dates in the Los Chocoyos ash, Central America. Earth and Planetary Science Letters, 2024, 643: 118826. 必应学术
    30. Wei, X., Chen, H., Garzanti, E. et al. Limitations of provenance diagnoses and maximum-depositional-age constraints based on detrital-zircon geochronology: the fertility bias. Terra Nova, 2024, 36(5): 380-391. 必应学术
    31. Luo, C., Qi, L., Xia, T. A database of detrital zircon U–Pb ages and Hf isotope of Precambrian strata in South China. Geoscience Data Journal, 2024, 11(4): 385-393. 必应学术
    32. Rugen, E.J., Pastore, G., Vermeesch, P. et al. Glacially influenced provenance and Sturtian affinity revealed by detrital zircon U–Pb ages from sandstones in the Port Askaig Formation, Dalradian Supergroup. Journal of the Geological Society, 2024, 181(5): jgs2024-029. 必应学术
    33. Caylor, E.A., Carrapa, B., DeCelles, P.G. et al. The real McCoy: A record of deep-water basin deposition in southwestern North America during the Cretaceous. Basin Research, 2024, 36(5): e12902. 必应学术
    34. Landing, E., Geyer, G. Comment on ‘New evidence for the Baltican cratonic affinity and Tonian to Ediacaran tectonic evolution of West Avalonia in the Avalon Peninsula, Newfoundland, Canada’. Precambrian Research, 2024, 410: 107489. 必应学术
    35. Thiessen, E.J., H.F.L. Davies, J., Dyck, B. et al. Detrital zircon U-Pb + Hf data supports 2.1 Ga extensional and 2.0 Ga syn-orogenic basin in southwest Rae Province during early Nuna assembly. Precambrian Research, 2024, 410: 107455. 必应学术
    36. Davis, W.J., Ielpi, A. Detrital zircon geochronology of Kilohigok basin: Record of Paleoproterozoic orogenesis and unroofing of the Thelon tectonic zone (Nunavut, Canada). Precambrian Research, 2024, 409: 107422. 必应学术
    37. Ribeiro, C.V.A., Dantas, E.L., Fuck, R.A. Paleoarchean sedimentation and Mesoarchean high-temperature metamorphism in northeastern Brazil: Tracing sources and depositional ages in polymetamorphic rocks. Lithos, 2024, 478-479: 107641. 必应学术
    38. Guerrero-Moreno, S., Solari, L.A., Maldonado, R. et al. Detrital zircon and rutile of southern Mexico Cambrian–Ordovician sandstone: Their significance for sediment provenance and Rheic Ocean evolution. Sedimentary Geology, 2024, 469: 106665. 必应学术
    39. Ferreira, E., Lehmann, J., Feliciano Rodrigues, J. et al. Zircon U-Pb and Lu-Hf isotopes reveal the crustal evolution of the SW Angolan Shield (Congo Craton). Gondwana Research, 2024, 131: 317-342. 必应学术
    40. Cerri, R.I., Warren, L.V., Luvizotto, G.L. et al. The Early Paleozoic sedimentary record in northeastern Brazil: Unravelling the sedimentary provenance and evolution of fluvial systems after the Western Gondwana assembly. Gondwana Research, 2024, 131: 237-255. 必应学术
    41. Andersen, T., Elburg, M.A., Kristoffersen, M. et al. Retrieving meaningful information from detrital zircon in Palaeoproterozoic sedimentary rocks: Provenance, timing of deposition, metamorphism and alteration of zircon in sandstones of the Pretoria Group in the Transvaal Basin, South Africa. South African Journal of Geology, 2024, 127(2): 473-454. 必应学术
    42. Lever, J.P., Sundell, K.E., Pearson, D.M. et al. Recently Identified Mesoproterozoic Strata in South-Central Idaho Document Late-Stage Rifting of the Nuna Supercontinent in Western Laurentia. Geochemistry, Geophysics, Geosystems, 2024, 25(6): e2024GC011503. 必应学术
    43. Sanz-Pérez, D., Montalvo, C.I., Mehl, A.E. et al. Reply to the comment on Sanz-Pérez et al., “Paleoenvironment and paleoecology associated with the early phases of the Great American Biotic Interchange based on stable isotope analysis of fossil mammals and new U[sbnd]Pb ages from the Pampas of Argentina” [Palaeogeography, Palaeoclimatology, Palaeoecology 634 (2024), 111917]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 641: 112110. 必应学术
    44. Rahim, Y., Li, Q., Hu, P. et al. Depositional age and provenance of metasedimentary rocks from the Hengshan Complex, North China Craton: Implications for the late Neoarchean to early Paleoproterozoic tectonic setting of the Trans-North China Orogen. Precambrian Research, 2024, 404: 107322. 必应学术
    45. Gao, S., Xu, Z., Kong, J. et al. Closing of the east Palaeo-Tethys Ocean: Source–sink records from Middle Triassic sediments, Hainan Island, China. Geological Journal, 2024, 59(4): 1337-1359. 必应学术
    46. Beaudette, M., Ross, P.-S., Davis, D.W. No longer an arc: The Parent Group, a newly recognized component of the 1.88 Ga Circum-Superior large igneous province, Quebec, Canada. Precambrian Research, 2024, 403: 107310. 必应学术
    47. Amaral, J.L., Solá, A.R., Bento dos Santos, T.M. et al. The bimodal Fii-A2-type and calc-alkaline volcanic sequence of the Aljustrel brownfield region, Iberian Pyrite Belt, SW Iberian Massif. Geochemistry, 2024, 84(1): 126049. 必应学术
    48. Xiao, Y., Rembe, J., Čopjaková, R. et al. Sedimentary record of Variscan unroofing of the Bohemian Massif. Gondwana Research, 2024, 128: 141-160. 必应学术
    49. Donaghy, E.E., Eddy, M.P., Moreno, F. et al. Minimizing the effects of Pb loss in detrital and igneous U-Pb zircon geochronology by CA-LA-ICP-MS. Geochronology, 2024, 6(1): 89-106. 必应学术
    50. Panca, F., Bahlburg, H., Cárdenas, J. et al. Sedimentology, geochronology and provenance of the late Permian and Triassic Mitu Group in Peru—The evolution of continental facies along a transform margin. Basin Research, 2024, 36(2): e12864. 必应学术
    51. Bălc, R., Bindiu-Haitonic, R., Kövecsi, S.-A. et al. Integrated biostratigraphy of Upper Cretaceous deposits from an exceptional continental vertebrate-bearing marine section (Transylvanian Basin, Romania) provides new constraints on the advent of ‘dwarf dinosaur’ faunas in Eastern Europe. Marine Micropaleontology, 2024, 187: 102328. 必应学术
    52. Deng, T., Ma, A., Chew, D. et al. Revisiting the stratigraphical, sedimentological and provenance evolution of Lingshan Island, offshore of east China: Implications for the destruction of the north China craton. Marine and Petroleum Geology, 2024, 161: 106701. 必应学术
    53. van de Lagemaat, S.H.A., Cao, L., Asis, J. et al. Causes of Cretaceous subduction termination below South China and Borneo: Was the Proto-South China Sea underlain by an oceanic plateau?. Geoscience Frontiers, 2024, 15(2): 101752. 必应学术
    54. Niu, Y.-Z., Shi, G.R., Zhang, Q. et al. Ediacaran Cordilleran-type mountain ice sheets and their erosion effects. Earth-Science Reviews, 2024, 249: 104671. 必应学术
    55. Sharman, G.R., Malkowski, M.A. Modeling apparent Pb loss in zircon U-Pb geochronology. Geochronology, 2024, 6(1): 37-51. 必应学术
    56. Sanz-Pérez, D., Montalvo, C.I., Mehl, A.E. et al. Paleoenvironment and paleoecology associated with the early phases of the Great American Biotic Interchange based on stable isotope analysis of fossil mammals and new U–Pb ages from the Pampas of Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 634: 111917. 必应学术
    57. Peck, W.H., Lin, H.Y. Provenance and depositional age of metasedimentary rocks in the Frontenac terrane (Grenville Province, Ontario). Canadian Journal of Earth Sciences, 2024, 62(5): 827-840. 必应学术
    58. Tye, A., Niemi, N.A. Detrital zircon U-Pb ages and provenance of Paleogene paleochannel strata, Sierra Nevada and western Nevada: Implications for paleotopographic evolution. Geosphere, 2024, 20(5): 1224-1246. 必应学术
    59. Buryak, S.D., Reyes, A.V., West, C.K. et al. Tephra zircon U-Pb geochronology of kimberlite maar sedimentary fills in subarctic Canada: Implications for Eocene paleoclimate and Late Cretaceous paleogeography. Bulletin of the Geological Society of America, 2024, 136(9-10): 3921-3938. 必应学术
    60. Thoresen, H.E., Cassel, E.J., Smith, M.E. et al. Stratigraphic and geochronologic investigation of the Muddy Creek Basin: Implications for the Eocene tectonic evolution of southwest Montana, USA. Bulletin of the Geological Society of America, 2024, 136(9-10): 3619-3633. 必应学术
    61. Álvaro, J.J., Jensen, S., Valverde-Vaquero, P. Multidisciplinary re-assessment of the Ediacaran–Cambrian boundary interval in south-western Europe. Newsletters on Stratigraphy, 2024, 57(3): 323-357. 必应学术
    62. Isozaki, Y., Iwano, H., Sawaki, Y. et al. Origin of the Hida Belt, Central Japan, with Respect to the Late Triassic Granitoids-bearing Cretaceous Provenance: U-Pb Dating and Trace Element Geochemistry of Detrital Zircons in Tetori Sandstones | [後期三畳紀花崗岩類を含む白亜紀後背地からみた飛騨帯の起源-手取砂岩中のジルコン U-Pb 年代と微量化学組成-]. Journal of Geography (Chigaku Zasshi), 2024, 133(3): 195-218. 百度学术
    63. Koch, M.M., McClelland, W.C., Gilotti, J.A. et al. Early Paleozoic accretionary history of the Pearya terrane: New insights from igneous and detrital zircon signatures of the Kulutingwak Formation, Ellesmere Island, Nunavut, Canada. Geosphere, 2024, 20(3): 778-798. 必应学术
    64. Chapman, A.D., Grischuk, J., Klapper, M. et al. Middle Jurassic to Early Cretaceous orogenesis in the Klamath Mountains Province (Northern California–southern Oregon, USA) occurred by tectonic switching: Insights from detrital zircon U-Pb geochronology of the Condrey Mountain schist. Geosphere, 2024, 20(3): 749-777. 必应学术
    65. Lundstern, J.-E., Schwartz, T.M., Mercer, C.M. et al. Paleogene Sedimentary Basin Development in Southern Nevada, USA. Lithosphere, 2024, 2024(1): lithosphere_2023_225. 必应学术
    66. Schmitt, A.K., Kennedy, A., Chamberlain, K. Ion microprobe accessory mineral geochronology. Methods and Applications of Geochronology, 2024. 必应学术
    67. Shellnutt, J.G., Denyszyn, S.W., Suga, K. Introduction to methods and applications of geochronology: A perspective on geological time. Methods and Applications of Geochronology, 2024. 必应学术
    68. Surpless, K.D., Alford, R.W., Barnes, C. et al. Late Jurassic paleogeography of the U.S. Cordillera from detrital zircon age and hafnium analysis of the Galice Formation, Klamath Mountains, Oregon and California, USA. Bulletin of the Geological Society of America, 2024, 136(3-4): 1488-1510. 必应学术
    69. Michalak, M.J., Cashman, S.M., Langenheim, V.E. et al. Neogene faulting, basin development, and relief generation in the southern Klamath Mountains (USA). Geosphere, 2024, 20(1): 237-266. 必应学术
    70. Soukup, M., Beranek, L.P., Lode, S. et al. Late Ediacaran to Early Cambrian Breakup Sequences and Establishment of the Eastern Laurentian Passive Margin, Newfoundland, Canada. American Journal of Science, 2024. 必应学术
    71. Sarkar, D.P., Ando, J.-I., Das, K. et al. Delineation of an exhumed intermediate-depth crustal fault in a collisional setting: An example from the Himalaya. Island Arc, 2024, 33(1): e12515. 必应学术
    72. Deng, T., Hu, X., Chew, D. et al. Sedimentological Evidence for Pre-Early Permian Continental Subduction in the Dabie Orogen, Central-East China. Tectonics, 2024, 43(1): e2023TC007839. 必应学术
    73. Sundell, K.E., Gehrels, G.E., D. Blum, M. et al. An exploratory study of “large-n” detrital zircon geochronology of the Book Cliffs, UT via rapid (3 s/analysis) U–Pb dating. Basin Research, 2024, 36(1): e12840. 必应学术
    74. Milidragovic, D., Ootes, L., Zagorevski, A. et al. Detrital geochronology of the Cunningham Lake formation: an overlap succession linking Cache Creek terrane to Stikinia at ∼205 Ma. Canadian Journal of Earth Sciences, 2024, 61(1): 39-57. 必应学术
    75. Leite, A.F.G.D., Fuck, R.A., Dantas, E.L. et al. Tectonic significance of the late-Ediacaran syn-orogenic basin in the easternmost portion of the Paraguay Belt, Tocantins Province, central Brazil. Journal of South American Earth Sciences, 2024, 133: 104735. 必应学术
    76. Tan, M., Sun, H., Fu, Y. et al. High-frequency temporal variability of provenance signal in the submarine fan with the narrow shelf: Insights from sediment delivery and formation of late Triassic Zhuoni fan in the northeastern Paleo-Tethys Ocean. Basin Research, 2024, 36(1): e12835. 必应学术
    77. Vasey, D.A., Garcia, L., Cowgill, E. et al. Episodic evolution of a protracted convergent margin revealed by detrital zircon geochronology in the Greater Caucasus. Basin Research, 2024, 36(1): e12825. 必应学术
    78. Wang, L., Garzanti, E., Cai, F. et al. The underestimated role of tectonics in the mid-Late Cretaceous desertification in SE Asia. Bulletin of the Geological Society of America, 2024, 136(1-2): 418-432. 必应学术
    79. Fellin, M.G., Zattin, M., Zuffa, G.G. et al. New detrital petrographic and thermochronologic constraints on the Late Cretaceous–Neogene erosional history of the equatorial margin of Brazil: Implications for the surface evolution of a complex rift margin. Basin Research, 2024, 36(1): e12808. 必应学术
    80. Mortimer, N., Lee, J., Stockli, D.F. Terrane and core complex architecture of the Otago Schist in the Dunstan and Cairnmuir Mountains, New Zealand, from U-Pb and (U-Th)/He zircon dating. New Zealand Journal of Geology and Geophysics, 2024, 67(2): 195-208. 必应学术
    81. Stubbins, B., Leier, A.L., Barbeau, D.L. et al. Global climate forcing on late Miocene establishment of the Pampean aeolian system in South America. Nature Communications, 2023, 14(1): 6899. 必应学术
    82. Deri, M.N., Ciccioli, P.L., Amidon, W.H. et al. U–Pb ages and paleoenvironmental evolution of the guanchín formation (neogene fiambalá foreland basin), Central Andes, Argentina. Journal of South American Earth Sciences, 2023, 132: 104629. 必应学术
    83. Breitfeld, H.T., Burley, S.D., Galin, T. et al. The Kuching Formation: A deep marine equivalent of the Sadong Formation, and its implications for the Early Mesozoic tectonic evolution of western and southern Borneo. Bulletin of the Geological Society of Malaysia, 2023, 76: 101-129. 必应学术
    84. Holm, R.J., Heilbronn, K., Saroa, D. et al. Provenance of the Papuan Peninsula (Papua New Guinea): Zircon Inheritance from Miocene–Pliocene Volcanics and Volcaniclastics. Geosciences (Switzerland), 2023, 13(11): 324. 必应学术
    85. Martin, C.R., Jagoutz, O., Upadhyay, R. et al. Paleomagnetic Constraint on the Age of the Shyok Suture Zone. Journal of Geophysical Research: Solid Earth, 2023, 128(10): e2022JB026137. 必应学术
    86. Petry, T.S., Philipp, R.P., Cabrita, D.I.G. et al. Subduction to accretion in the southern Irumide Belt: Perspective from geochronology and petrology of granulites and charnockites in NW Mozambique. Precambrian Research, 2023, 397: 107190. 必应学术
    87. Garza, H.K., Catlos, E.J., Chamberlain, K.R. et al. How old is the Ordovician-Silurian boundary at Dob's Linn, Scotland? Integrating LA-ICP-MS and CA-ID-TIMS U-Pb zircon dates. Geological Magazine, 2023, 160(9): 1775-1789. 必应学术
    88. Dehler, C., Schmitz, M., Bullard, A. et al. Precise U-Pb age models refine Neoproterozoic western Laurentian rift initiation, correlation, and Earth system changes. Precambrian Research, 2023, 396: 107156. 必应学术
    89. Wu, Z., Yang, X., Sun, S. et al. Detrital zircon U-Pb dating of Late Mesozoic strata in the Junggar Basin, NW China: Implications for the timing of collision between the Karakoram-Lhasa Block and the Eurasian continent. Journal of Asian Earth Sciences, 2023, 254: 105755. 必应学术
    90. Salminen, P.E., Kurhila, M. New age constraints for metasedimentary rocks in southern Finland. Bulletin of the Geological Society of Finland, 2023, 95: 83-106. 必应学术
    91. Sharman, G.R., Covault, J.A., Flaig, P.P. et al. Coastal response to global warming during the Paleocene-Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 625: 111664. 必应学术
    92. Li, Y., Jin, M., Wang, S. et al. Exploration of Issues Related to the LA-ICP-MS U-Pb Dating Technique | [LA-ICP-MS U-Pb 定年技术相关问题探讨]. Northwestern Geology, 2023, 56(4): 274-282. 百度学术
    93. Philipp, R.P., Faccini, U.F., Schultz, C.L. et al. U-Pb Zircon Geochronology of Detrital and Ash Fall Deposits of the Southern Paraná Basin: A Contribution for Provenance, Tectonic Evolution, and the Paleogeography of the SW Gondwana. Geosciences (Switzerland), 2023, 13(8): 225. 必应学术
    94. Finzel, E.S., Rosenblume, J.A., Pearson, D.M. et al. Timing of the Transition From Sevier- to Laramide-Style Tectonism in Southwestern Montana Based on the Provenance of the Frontier Formation, North American Cordillera. Tectonics, 2023, 42(8): e2023TC007777. 必应学术
    95. Senger, M.H., Davies, J.H.F.L., Ovtcharova, M. et al. Improving the chronostratigraphic framework of the Transvaal Supergroup (South Africa) through in-situ and high-precision U-Pb geochronology. Precambrian Research, 2023, 392: 107070. 必应学术
    96. Alexeiev, D.V., Khudoley, A.K., DuFrane, S.A. et al. Early Neoproterozoic fore-arc basin strata of the Malyi Karatau Range (South Kazakhstan): Depositional ages, provenance and implications for reconstructions of Precambrian continents. Gondwana Research, 2023, 119: 313-340. 必应学术
    97. Wang, W., Wang, G.-C., Zhang, P. et al. A Late Palaeozoic disconformity in the Moqinwula area: Insights into the tectonic evolution and basement nature of the Junggar Block, NW China. Geological Journal, 2023, 58(7): 2757-2776. 必应学术
    98. Beranek, L.P., Hutter, A.D., Pearcey, S. et al. New evidence for the Baltican cratonic affinity and Tonian to Ediacaran tectonic evolution of West Avalonia in the Avalon Peninsula, Newfoundland, Canada. Precambrian Research, 2023, 390: 107046. 必应学术
    99. Su, W., Wang, Q., Kang, J. et al. Proterozoic evolution of the Alxa block in western China: A wandering terrane during supercontinent cycles. Precambrian Research, 2023, 389: 107002. 必应学术
    100. Wang, L., Malkowski, M.A., Cai, F. et al. A climate-driven transcontinental drainage system in the southeast Tibetan Plateau during the Early Cretaceous. Journal of Asian Earth Sciences, 2023, 248: 105615. 必应学术
    101. Acevedo, E., Fernández Paz, L., Encinas, A. et al. Late Jurassic back-arc extension in the Neuquén Basin (37°S): Insights from structural, sedimentological and provenance analyses. Basin Research, 2023, 35(3): 1012-1036. 必应学术
    102. Ma, X., Wang, J., Algeo, T.J. et al. U-Pb dating of detrital zircons from the Datangpo Formation, South China: Implications for Sturtian deglaciation age and Nanhua stratal provenance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617: 111494. 必应学术
    103. Custódio, M.A., Roddaz, M., Santos, R.V. et al. New stratigraphic and paleoenvironmental constraints on the Paleogene paleogeography of Western Amazonia. Journal of South American Earth Sciences, 2023, 124: 104256. 必应学术
    104. Saylor, J.E., Sundell, K.E., Perez, N.D. et al. Basin formation, magmatism, and exhumation document southward migrating flat-slab subduction in the central Andes. Earth and Planetary Science Letters, 2023, 606: 118050. 必应学术
    105. Botero-Garcia, M., Vinasco, C.J., Restrepo-Moreno, S.A. et al. Caribbean–South America interactions since the Late Cretaceous: Insights from zircon U–Pb and Lu–Hf isotopic data in sedimentary sequences of the northwestern Andes. Journal of South American Earth Sciences, 2023, 123: 104231. 必应学术
    106. Środoń, J., Condon, D.J., Golubkova, E. et al. Ages of the Ediacaran Volyn-Brest trap volcanism, glaciations, paleosols, Podillya Ediacaran soft-bodied organisms, and the Redkino-Kotlin boundary (East European Craton) constrained by zircon single grain U-Pb dating. Precambrian Research, 2023, 386: 106962. 必应学术
    107. Culshaw, N., Van De Kerckhove, S., Slagstad, T. et al. Crustal evolution of the Laurentian continental margin from the Paleo- through Mesoproterozic: A zircon U–Pb and Hf transect through the western Grenville Province, Ontario, Canada. Precambrian Research, 2023, 386: 106963. 必应学术
    108. Andrade, C., Sobczak, K., Vasconcelos, P. et al. U-Pb detrital zircon geochronology of the middle to upper Jurassic strata in the Surat Basin: New insights into provenance, paleogeography, and source-sink processes in eastern Australia. Marine and Petroleum Geology, 2023, 149: 106122. 必应学术
    109. Riley, T.R., Millar, I.L., Carter, A. et al. Evolution of an Accretionary Complex (LeMay Group) and Terrane Translation in the Antarctic Peninsula. Tectonics, 2023, 42(2): e2022TC007578. 必应学术
    110. Johns-Buss, E.G., Beranek, L.P., Enkelmann, E. et al. Exhumation history and Early Cretaceous paleogeography of the Newfoundland margin revealed by detrital zircon U–Pb and fission-track studies of syn-rift Hibernia Formation strata. Marine and Petroleum Geology, 2023, 148: 106055. 必应学术
    111. Roban, R.D., Ducea, M.N., Mihalcea, V.I. et al. Provenance of Oligocene lithic and quartz arenites of the East Carpathians: Understanding sediment routing systems on compressional basin margins. Basin Research, 2023, 35(1): 244-270. 必应学术
    112. Kortyna, C., Stockli, D.F., Lawton, T.F. et al. Impact of Mexican Border rift structural inheritance on Laramide rivers of the Tornillo basin, west Texas (USA): Insights from detrital zircon provenance. Geosphere, 2023, 19(6): 1747-1787. 必应学术
    113. Tucker, R.T., Crowley, J.L., Mohr, M.T. et al. Exceptional age constraint on a fossiliferous sedimentary succession preceding the Cretaceous Thermal Maximum. Geology, 2023, 51(10): 962-967. 必应学术
    114. Kroeger, E.D.L., McClelland, W.C., Colpron, M. et al. Detrital zircon U-Pb and Hf isotope signature of Carboniferous and older strata of the Yukon-Tanana terrane in Yukon, Canadian Cordillera: Implications for terrane correlations and the onset of Late Devonian arc magmatism. Geosphere, 2023, 19(4): 1032-1056. 必应学术
    115. Wahbi, A.M., Blum, M.D., Doerger, C.N. Early Cretaceous continental-scale sediment routing, the McMurray Formation, Western Canada Sedimentary Basin, Alberta, Canada. Bulletin of the Geological Society of America, 2023, 135(7-8): 2088-2106. 必应学术
    116. Schwartz, T.M., Souders, A.K., Lundstern, J.-E. et al. Revised age and regional correlations of Cenozoic strata on Bat Mountain, Death Valley region, California, USA, from zircon U-Pb geochronology of sandstones and ash-fall tuffs. Geosphere, 2023, 19(1): 235-257. 必应学术
    117. Midttun, N., Niemi, N.A., Gallina, B. Stratigraphy of the Eocene–Oligocene Titus Canyon Formation, Death Valley, California (USA), and Eocene extensional tectonism in the Basin and Range. Geosphere, 2023, 19(1): 258-290. 必应学术
    118. Pointon, M.A., Smyth, H., Omma, J.E. et al. A Multi-proxy Provenance Study of Late Carboniferous to Middle Jurassic Sandstones in the Eastern Sverdrup Basin and Its Bearing on Arctic Palaeogeographic Reconstructions. Geosciences (Switzerland), 2023, 13(1): 10. 必应学术
    119. Aung, M.M., Ding, L., Baral, U. et al. Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar. Minerals, 2022, 12(12): 1632. 必应学术
    120. van Kooten, W.S.M.T., Del Papa, C.E., Starck, D. et al. Evidence of Jurassic extension in NW Argentina: Characterization of fault-related strata at the Salta Group base using sandstone provenance and zircon U–Pb geochronology. Journal of South American Earth Sciences, 2022, 120: 104048. 必应学术
    121. Beranek, L.P., Nissen, A., Murphy, S. et al. Late Jurassic syn-rift deposition in the Flemish Pass basin, offshore Newfoundland: Evidence for Tithonian magmatism and Appalachian-Variscan sediment sources from quantitative mineral and detrital zircon U–Pb-Hf isotope studies of Mizzen discovery strata. Marine and Petroleum Geology, 2022, 146: 105960. 必应学术
    122. Riley, T.R., Carter, A., Burton-Johnson, A. et al. Crustal block origins of the South Scotia Ridge. Terra Nova, 2022, 34(6): 495-502. 必应学术
    123. Buryak, S.D., Reyes, A.V., Jensen, B.J.L. et al. Laser-ablation ICP-MS zircon U-Pb ages for key Pliocene-Pleistocene tephra beds in unglaciated Yukon and Alaska. Quaternary Geochronology, 2022, 73: 101398. 必应学术
    124. Uriz, N.J., Cingolani, C.A., Taboada, A.C. et al. Provenance of pre- and Carboniferous sequences of the Esquel-Arroyo Pescado-Tepuel regions (Argentine Patagonia): A combined U–Pb and Hf isotope study of detrital zircon and constraints on depositional setting. Journal of South American Earth Sciences, 2022, 119: 103953. 必应学术
    125. Sobczak, K., La Croix, A.D., Esterle, J. et al. Geochronology and sediment provenance of the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia: Implications for the palaeogeography of eastern Gondwana. Gondwana Research, 2022, 111: 189-208. 必应学术
    126. Koch, M.M., Faehnrich, K., McClelland, W.C. et al. Age and significance of the Fire Bay assemblage: an Ordovician arc fragment within the Clements Markham belt, northwestern Ellesmere Island, Canada. Canadian Journal of Earth Sciences, 2022, 59(10): 639-659. 必应学术
    127. Amato, J.M., Dumoulin, J.A., Gottlieb, E.S. et al. Detrital zircon ages from upper Paleozoic–Triassic clastic strata on St. Lawrence Island, Alaska: An enigmatic component of the Arctic Alaska–Chukotka microplate. Geosphere, 2022, 18(5): 1492-1523. 必应学术
    128. Petry, T.S., Philipp, R.P., Jamal, D.L. et al. U-Pb and Lu-Hf zircon data of the grenvilian arc-related Zâmbué, Fíngoè and Cazula supracrustal complexes, Southern Irumide Belt, NW Mozambique. Precambrian Research, 2022, 381: 106860. 必应学术
    129. Wu, Z., Lu, C., Qiu, L. et al. New detrital zircon geochronological results from the Meso-Neoproterozoic sandstones in the southern-eastern Liaoning region, North China craton, and their paleogeographic implications. Precambrian Research, 2022, 381: 106847. 必应学术
    130. Shen, L., Wang, L., Liu, C. Age of the Mengyejing potash deposit in the Simao Basin, southwest China: Constraints from detrital zircon U-Pb ages. Ore Geology Reviews, 2022, 149: 105097. 必应学术
    131. La Croix, A.D., Sobczak, K., Esterle, J.S. et al. Integrating palynostratigraphy with zircon geochronology in the Lower Jurassic Precipice Sandstone and Evergreen Formation to improve stratigraphic correlation within the Great Artesian Basin, Australia. Marine and Petroleum Geology, 2022, 144: 105845. 必应学术
    132. Jaramillo, J.S., Zapata, S., Carvalho, M. et al. Diverse Magmatic Evolutionary Trends of the Northern Andes Unraveled by Paleocene to Early Eocene Detrital Zircon Geochemistry. Geochemistry, Geophysics, Geosystems, 2022, 23(9): e2021GC010113. 必应学术
    133. Jian, D., Williams, S.E., Yu, S. et al. Quantifying the Link Between the Detrital Zircon Record and Tectonic Settings. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024606. 必应学术
    134. Gulbranson, E.L., Rasbury, E.T., Ludvigson, G.A. et al. U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions. Geosciences (Switzerland), 2022, 12(9): 346. 必应学术
    135. Wang, L., Ding, L., Garzanti, E. et al. Mid-Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Tibet. Sedimentary Geology, 2022, 439: 106221. 必应学术
    136. Tucker, R.T., Hyland, E.G., Gates, T.A. et al. Age, depositional history, and paleoclimatic setting of Early Cretaceous dinosaur assemblages from the Sao Khua Formation (Khorat Group), Thailand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601: 111107. 必应学术
    137. Sakuwaha, K.G., Tsunogae, T., Banda, P. et al. Neoproterozoic thermal events and crustal growth in the Zambezi Belt, Zambia: New insights from geothermobarometry, monazite dating, and detrital zircon geochronology of metapelites. Lithos, 2022, 424-425: 106762. 必应学术
    138. Martin, A.J., Domènech, M., Stockli, D.F. et al. Provenance and maximum depositional ages of Upper Triassic and Jurassic sandstone, north-eastern Mexico. Basin Research, 2022, 34(3): 1164-1190. 必应学术
    139. Darin, M.H., Armentrout, J.M., Dorsey, R.J. Oligocene onset of uplift and inversion of the Cascadia forearc basin, southern Oregon Coast Range, USA. Geology, 2022, 50(5): 603-609. 必应学术
    140. Runyon, B., Saylor, J.E., Horton, B.K. et al. Basin evolution in response to flat-slab subduction in the Altiplano. Journal of the Geological Society, 2022, 179(3): jgs2021-003. 必应学术
    141. Barham, M., Kirkland, C.L., Handoko, A.D. Understanding ancient tectonic settings through detrital zircon analysis. Earth and Planetary Science Letters, 2022, 583: 117425. 必应学术
    142. Rosenblume, J.A., Finzel, E.S., Pearson, D.M. et al. Middle Albian provenance, sediment dispersal and foreland basin dynamics in southwestern Montana, North American Cordillera. Basin Research, 2022, 34(2): 913-937. 必应学术
    143. Zutterkirch, I.C., Kirkland, C.L., Barham, M. et al. Thin-section detrital zircon geochronology mitigates bias in provenance investigations. Journal of the Geological Society, 2022, 179(2): jgs2021-070. 必应学术
    144. Krzemińska, E., Poprawa, P., Pacześna, J. et al. From initiation to termination: The evolution of the Ediacaran Volyn large igneous province (SW East European Craton) constrained by comparative geochemistry of proximal tuffs versus lavas and zircon geochronology. Precambrian Research, 2022, 370: 106560. 必应学术
    145. Papapavlou, K., Moukhsil, A., Poirier, A. et al. The Pre-Grenvillian assembly of the southeastern Laurentian margin through the U–Pb–Hf detrital zircon record of Mesoproterozoic supracrustal sequences (Central Grenville Province, Quebec, Canada). Geological Magazine, 2022, 159(2): 199-211. 必应学术
    146. Campbell, M.J., Hoy, D., Rosenbaum, G. et al. The Onset of Gondwanide Orogeny in Eastern Australia: Insight From the Provenance of Syn-Orogenic Strata in the New England Orogen (Australia). Tectonics, 2022, 41(2): e2021TC006940. 必应学术
    147. Austin, J.M., Hayman, P.C., Murphy, D.T. et al. The voluminous 2.81–2.71 Ga Goldfields Tholeiitic Super Event: Implications for basin architecture in the Yilgarn Craton and global correlations. Precambrian Research, 2022, 369: 106528. 必应学术
    148. Davis, E.M., Rudolph, K.W., Saylor, J.E. et al. Effects of contemporaneous orogenesis on sedimentation in the Late Cretaceous Western Interior Basin, northern Utah and southwestern Wyoming. Basin Research, 2022, 34(1): 366-392. 必应学术
    149. Shrivastava, A.K., Raza, M.B., Saha, L. et al. Paleo-Mesoproterozoic Rifting Along the Margins of Archean Bundelkhand Craton North-Central India: Timing the Event from U–Pb SHRIMP Zircon Data and Their Geodynamic Implications. Lithosphere, 2022, 2022(SpecialIssue8): 4111013. 必应学术
    150. Couzinié, S., Bouilhol, P., Laurent, O. et al. Cambro-Ordovician ferrosilicic magmatism along the northern Gondwana margin: constraints from the Cézarenque-Joyeuse gneiss complex (French Massif Central). BSGF - Earth Sciences Bulletin, 2022, 193: 15. 必应学术
    151. Foley, E.K., Roberts, E.M., Henderson, R.A. et al. Middle Jurassic–Lower Cretaceous stratigraphy of the northern Great Australian Superbasin: insights from maximum depositional age constraints from the U–Pb detrital zircon record. Australian Journal of Earth Sciences, 2022, 69(7): 929-952. 必应学术
    152. Hanson, A.E.H., Gordon, S.M., Ashley, K.T. et al. Multiple sediment incorporation events in a continental magmatic arc: Insight from the metasedimentary rocks of the northern North Cascades, Washington (USA). Geosphere, 2022, 18(1): 298-326. 必应学术
    153. Ren, X., Han, Z., Dong, Y. et al. Early Cretaceous uplift of the Jiaobei Terrane: Evidence from the detrital zircon and sediment compositions of sandstones in the Jiaodong Peninsula, China. Geological Journal, 2022, 57(1): 254-275. 必应学术
    154. Rosenbaum, G., Rogers, A., Gürer, D. et al. Origin of the Intra-Oceanic Silverwood Block (New England Orogen, Australia): Evidence From Radiolarian Biostratigraphy and Detrital Zircon Petrochronology. Tectonics, 2021, 40(12): e2021TC006920. 必应学术
    155. Gómez, R., Galetto, A., Arzadún, G. et al. Multiproxy provenance analysis of Lower to Upper Cretaceous synorogenic deposits in the Southern Andes (34–35°S): Evidence of coeval volcanism during the onset of the Andean orogeny. Cretaceous Research, 2021, 128: 104985. 必应学术
    156. Cerva-Alves, T., Hartmann, L.A., Queiroga, G.N. et al. Metamorphic evolution of the juvenile Serrinha forearc basin in the southern Brasiliano Orogen. Precambrian Research, 2021, 365: 106394. 必应学术
    157. Chu, Y., Wan, B., Allen, M.B. et al. Detrital Zircon Age Constraints on the Evolution of Paleo-Tethys in NE Iran: Implications for Subduction and Collision Tectonics. Tectonics, 2021, 40(8): e2020TC006680. 必应学术
    158. Rubino, E., Leier, A., Cassel, E.J. et al. Detrital zircon U–Pb ages and Hf-isotopes from Eocene intermontane basin deposits of the southern Canadian Cordillera. Sedimentary Geology, 2021, 422: 105969. 必应学术
    159. Sundell, K.E., Saylor, J.E. Two-Dimensional Quantitative Comparison of Density Distributions in Detrital Geochronology and Geochemistry. Geochemistry, Geophysics, Geosystems, 2021, 22(4): e2020GC009559. 必应学术
    160. Rinke-Hardekopf, L., Dashtgard, S.E., Huang, C. et al. Application of grouped detrital zircon analyses to determine provenance and closely approximate true depositional age: Early Cretaceous McMurray-Clearwater succession, Canada. Geoscience Frontiers, 2021, 12(2): 877-892. 必应学术
    161. Parker, W.G., Nesbitt, S.J., Marsh, A.D. et al. First occurrence of Doswellia cf. D. kaltenbachi (Archosauriformes) from the Late Triassic (middle Norian) Chinle Formation of Arizona and its implications on proposed biostratigraphic correlations across North America during the Late Triassic. Journal of Vertebrate Paleontology, 2021, 41(3): e1976196. 必应学术

    其他类型引用(3)

计量
  • 文章访问数:  375
  • HTML全文浏览量:  99
  • PDF下载量:  2
  • 被引次数: 164
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2020-08-19
  • 网络出版日期:  2021-03-08
  • 发布日期:  2021-03-08

目录

    /

    返回文章
    返回