Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle

Zhaodong Liu, Ran Liu, Yucheng Shang, Fangren Shen, Luyao Chen, Xuyuan Hou, Mingguang Yao, Tian Cui, Bingbing Liu, Tomoo Katsura

Zhaodong Liu, Ran Liu, Yucheng Shang, Fangren Shen, Luyao Chen, Xuyuan Hou, Mingguang Yao, Tian Cui, Bingbing Liu, Tomoo Katsura. Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle[J]. 地学前缘, 2021, 12(2): 929-935. DOI: 10.1016/j.gsf.2020.04.009
引用本文: Zhaodong Liu, Ran Liu, Yucheng Shang, Fangren Shen, Luyao Chen, Xuyuan Hou, Mingguang Yao, Tian Cui, Bingbing Liu, Tomoo Katsura. Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle[J]. 地学前缘, 2021, 12(2): 929-935. DOI: 10.1016/j.gsf.2020.04.009
Zhaodong Liu, Ran Liu, Yucheng Shang, Fangren Shen, Luyao Chen, Xuyuan Hou, Mingguang Yao, Tian Cui, Bingbing Liu, Tomoo Katsura. Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle[J]. Geoscience Frontiers, 2021, 12(2): 929-935. DOI: 10.1016/j.gsf.2020.04.009
Citation: Zhaodong Liu, Ran Liu, Yucheng Shang, Fangren Shen, Luyao Chen, Xuyuan Hou, Mingguang Yao, Tian Cui, Bingbing Liu, Tomoo Katsura. Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle[J]. Geoscience Frontiers, 2021, 12(2): 929-935. DOI: 10.1016/j.gsf.2020.04.009

Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle

基金项目: 

DFG: KA3434/3-1, KA3434/7-1, KA3434/8-1, KA3434/9-1) and Z. L. (the National Science Foundation of China Grant No. 41902034).

belhack for their assistance with sample and high-pressure assembly preparation. The manuscript is greatly improved by the constructive comments of Shatskiy Anton and one anonymous reviewers and the Handing Editor. Z. L. was financially supported by the Bayerisches Geoinstitut Visitor’s Program and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 45119031C037). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Proposal No. 787 527) It is also supported by research grants to T. K. (BMBF: 05K13WC2, 05K16WC2

We thank E. Posner, D. Krauβe, R. Njul, H. Fischer, and S. Ü

详细信息
    通讯作者:

    Zhaodong Liu,E-mail:liu_zhaodong@jlu.edu.cn

Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle

Funds: 

DFG: KA3434/3-1, KA3434/7-1, KA3434/8-1, KA3434/9-1) and Z. L. (the National Science Foundation of China Grant No. 41902034).

belhack for their assistance with sample and high-pressure assembly preparation. The manuscript is greatly improved by the constructive comments of Shatskiy Anton and one anonymous reviewers and the Handing Editor. Z. L. was financially supported by the Bayerisches Geoinstitut Visitor’s Program and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 45119031C037). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Proposal No. 787 527) It is also supported by research grants to T. K. (BMBF: 05K13WC2, 05K16WC2

We thank E. Posner, D. Krauβe, R. Njul, H. Fischer, and S. Ü

  • 摘要: The temperature dependence of the Al2O3 solubility in bridgmanite has been determined in the system MgSiO3-Al2O3 at temperatures of 2750-3000 K under a constant pressure of 27 GPa using a multi-anvil apparatus. Bridgmanite becomes more aluminous with increasing temperatures. A LiNbO3-type phase with a pyrope composition (Mg3Al2Si3O12) forms at 2850 K, which is regarded as to be transformed from bridgmanite upon decompression. This phase contains 30 mol% Al2O3 at 3000 K. The MgSiO3 solubility in corundum also increases with temperatures, reaching 52 mol% at 3000 K. Molar volumes of the hypothetical Al2O3 bridgmanite and MgSiO3 corundum are constrained to be 25.95±0.05 and 26.24±0.06 cm3/mol, respectively, and interaction parameters of non-ideality for these two phases are 5.6±0.5 and 2.2±0.5 KJ/mol, respectively. The increases in Al2O3 and MgSiO3 contents, respectively, in bridgmanite and corundum are caused by a larger entropy of Al2O3 bridgmanite plus MgSiO3 corundum than that of MgSiO3 bridgmanite plus Al2O3 corundum with temperature, in addition to the configuration entropy. Our study may help explain dynamics of the top lower mantle and constrain pressure and temperature conditions of shocked meteorites.
    Abstract: The temperature dependence of the Al2O3 solubility in bridgmanite has been determined in the system MgSiO3-Al2O3 at temperatures of 2750-3000 K under a constant pressure of 27 GPa using a multi-anvil apparatus. Bridgmanite becomes more aluminous with increasing temperatures. A LiNbO3-type phase with a pyrope composition (Mg3Al2Si3O12) forms at 2850 K, which is regarded as to be transformed from bridgmanite upon decompression. This phase contains 30 mol% Al2O3 at 3000 K. The MgSiO3 solubility in corundum also increases with temperatures, reaching 52 mol% at 3000 K. Molar volumes of the hypothetical Al2O3 bridgmanite and MgSiO3 corundum are constrained to be 25.95±0.05 and 26.24±0.06 cm3/mol, respectively, and interaction parameters of non-ideality for these two phases are 5.6±0.5 and 2.2±0.5 KJ/mol, respectively. The increases in Al2O3 and MgSiO3 contents, respectively, in bridgmanite and corundum are caused by a larger entropy of Al2O3 bridgmanite plus MgSiO3 corundum than that of MgSiO3 bridgmanite plus Al2O3 corundum with temperature, in addition to the configuration entropy. Our study may help explain dynamics of the top lower mantle and constrain pressure and temperature conditions of shocked meteorites.
  • [1]

    Akaogi, M., Ito, E., 1999. Calorimetric study on majorite-perovskite transition in the system Mg4Si4O12-Mg3Al2Si3O12: transition boundaries with positive pressure-temperature slope. Phys. Earth Planet. In. 114, 129-140.

    [2]

    Akaogi, M., Tanaka, A., Ito, E., 2002. Garnet-ilmenite-perovskite transitions in the system Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys. Earth Planet. In. 132, 303-324.

    [3]

    Anderson, D.L., 1983. Chemical composition of the mantle. J. Geophys. Res. 88, 41-B52.

    [4]

    Brodholt, J.P., 2000. Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature 407, 620-622.

    [5]

    Davies, P.K., Navrotsky, A., 1983. Quantitative correlations of deviations from ideality in binary and pseudo-binary solid solutions. J. Solid State Chem. 46, 1-22.

    [6]

    D'Amour, H., Schiferl, D., Denner, W., Schulz, H., Holzapfel, W.B., 1978. High-pressure single-crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer P = 0 kbar. J. Appl. Phys. 49, 4411-4416.

    [7]

    Farnetani, C.G., 1997. Excess temperature of chemical stratification mantle plumes: the role of chemical stratification across D". Geophys. Res. Lett. 24, 1583-1586.

    [8]

    Funamori, N., Yagi, T., Miyajima, N., Fujino, K., 1997. Transformation in garnet: from orthorhombic perovskite to LiNbO3 phase on release of pressure. Science 275, 513-515.

    [9]

    Green, D.H., Hibberson, W.O., Jaques, A.L., 1979. Petrogenesis of mid-ocean ridge basalts. In: McElhinny, M.W. (Ed.), The Earth: its Origin, Structure and Evolution.Academic Press, London, pp. 269-299.

    [10]

    Hirose, K., Fei, Y., Yagi, T., Funakoshi, K., 2001. In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth’s mantle. Earth Planet Sci. Lett. 184, 567-573.

    [11]

    Horiuchi, H., Hirano, M., Ito, E., Matsui, Y., 1982. MgSiO3 (ilmenite-type): single crystal X-ray diffraction study. Am. Mineral. 67, 788-793.

    [12]

    Irifune, T., 1994. Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature 370, 131-133.

    [13]

    Irifune, T., Koizumi, T., Ando, J., 1996. An experimental study of the garnet-provskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys. Earth Planet. In. 96, 147-157.

    [14]

    Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Wang, L., Yamamoto, T., Miyajima, N., Kawazoe, T., Nishiyama, N., Higo, Y., Tange, Y., Katsura, T., 2016. Generation of pressure over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev. Sci. Instrum. 87 (2) https://doi.org/10.1063/1.4941716.

    [15]

    Ishii, T., Sinmyo, R., Komabayashi, T., Boffa-Ballaran, T., Kawazoe, T., Miyajima, N., Hirose, K., Katsura, T., 2017. Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: a possible indicator of shock conditions of meteorites. Am. Mineral. 102, 1947-1952.

    [16]

    Ito, E., Matsui, Y., 1978. Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci. Lett. 38, 443-450.

    [17]

    Jung, D.Y., Vinograd, V.L., Fabrichnaya, O.B., Oganov, A.R., Schmidt, M.W., Winkler, B., 2010. Thermodynamics of mixing in MgSiO3-Al2O3 perovskite and ilmenite from ab initio calculations. Earth Planet Sci. Lett. 295, 477-48.

    [18]

    Kubo, A., Akaogi, M., 2000. Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys. Earth Planet. In. 121, 85-102.

    [19]

    Kudo, R., Ito, E., 1996. Melting relations in the system Mg4Si4O12 (En)-Mg3Al2Si3O12 (Py)at high pressures. Phys. Earth Planet. In. 96, 159-169.

    [20]

    Liu, Z.D., Akaogi, M., Katsura, T., 2019b. Increase of the oxygen vacancy component in bridgmanite with temperature. Earth Planet Sci. Lett. 505, 141-151.

    [21]

    Liu, Z.D., Boffa Ballaran, T., Frost, D., Katsura, T., 2019a. Strong correlation of oxygen vacancy in bridgmanite with Mg/Si ratios. Earth Planet Sci. Lett. 523, 115697.

    [22]

    Liu, Z.D., Dubrovinsky, L., McCammon, C, Ovsyannikov, S.V., Koemets, I., Chen, L.Y, Cui, Q., Su, N., Cheng, J.G., Cui, T., Liu, B.B., Katsura, T., 2019c. A new (Mg0.5Fe3+0.5)(Si0.5Al3+0.5)O3 LiNbO3-type phase synthesized at lower mantle conditions. Am.Miner. 104, 1213-1216.

    [23]

    Liu, Z.D., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., Shinmei, T., 2016. Phase relations in the system MgSiO3-Al2O3 up to 52 GPa and 2000 K. Phys. Earth Planet. In. 257, 18-27.

    [24]

    Liu, Z.D., Ishii, T., Katsura, T., 2017b. Rapid decrease of MgAlO2.5 component in bridgmanite with pressure. Geochem. Perspect. Lett. 5, 12-18.

    [25]

    Liu, Z.D., Nishi, M., Ishii, T., Fei, H.Z., Miyajima, N., Boffa Ballaran, T., Ohfuji, H., Sakai, T., Wang, L., Shcheka, S., Arimoto, T., Tange, Y., Higo, Y., Irifune, T., Katsura, T., 2017a. Phase relations in the system MgSiO3-Al2O3 up to 2300 K at lower-mantle pressures. J. Geophys. Res. 122 (10), 7775-7788.

    [26]

    McCammon, C.A., 1997. Perovskite as a possible sink for ferric iron in the lower mantle.Nature 387, 694-696.

    [27]

    McDonough, W.F., Sun, S.-s., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.

    [28]

    Miyajima, N., Fujino, K., Funamori, N., Kondo, T., Yagi, T., 1999. Garnet-perovskite transformation under conditions of the Earth’s lower mantle: an analytical transmission electron microscopy study. Phys. Earth Planet. In. 116, 117-131.

    [29]

    Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H., Zhang, J., Weidener, D.J., Jeanloz, R., 2003. Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. J. Geophys. Res. 108, 2330.

    [30]

    Panero, P.W., Akber-Knutson, S., Akber-Knutson, L., 2006. Al2O3 incorporation in MgSiO3 perovskite and ilmenite. Earth Planet Sci. Lett. 252, 152-161. https://doi.org/10.1016/j.epsl.2006.09.036.

    [31]

    Ringwood, A.E., 1975. Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York.

    [32]

    Ross, N.L., Ko, J., Prewvitt, C.T., 1989. A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys. Chem. Miner. 16, 621-629.

    [33]

    Sharp, T.G., Lingemann, C.M., Dupas, C., Stöffler, D., 1997. Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite.Science 277, 352-355.

    [34]

    Sun, S., 1982. Chemical composition and the origin of the Earth’s primitive mantle.Geochem. Cosmochim. Acta 46, 179-192.

    [35]

    Thévenin, Th, Arlés, L., Boivineau, M., Vermeulen, J.M., 1993. Thermophysical properties of rhenium. Int. J. Thermophys. 14, 441-448.

    [36]

    Xu, Y., McCammon, C.A., Poe, B.T., 1998. The effect of alumina on the electrical conductivity of silicate perovskite. Science 282, 922-924.

    [37]

    Zhang, J., Weidner, D.J., 1999. Thermal equation of state of aluminium-enriched silicate perovskite. Science 284, 782-784.

  • 期刊类型引用(3)

    1. Fei, H., Lyu, Y., Wang, F. et al. The effects of trivalent cations (Al and Fe) on the grain growth rates of bridgmanite. Earth and Planetary Science Letters, 2024. 必应学术
    2. Katsura, T.. Technical Development of the Multi-Anvil High-Pressure-Temperature Apparatus and its Application to Study of the Earth’s Interior. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2023, 33(2): 116-124. 必应学术
    3. Du, J., Zhang, B., Zou, B. et al. High pressure geochemistry: Preface. Geoscience Frontiers, 2021, 12(2): 893-895. 必应学术

    其他类型引用(1)

计量
  • 文章访问数:  239
  • HTML全文浏览量:  31
  • PDF下载量:  1
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-10-20
  • 修回日期:  2020-01-31
  • 网络出版日期:  2021-03-08
  • 发布日期:  2021-03-08

目录

    /

    返回文章
    返回