Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton

Zhilin Ye, Fang Wan, Neng Jiang, Jingui Xu, Yuanyun Wen, Dawei Fan, Wenge Zhou

Zhilin Ye, Fang Wan, Neng Jiang, Jingui Xu, Yuanyun Wen, Dawei Fan, Wenge Zhou. Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton[J]. 地学前缘, 2021, 12(2): 896-906. DOI: 10.1016/j.gsf.2020.03.008
引用本文: Zhilin Ye, Fang Wan, Neng Jiang, Jingui Xu, Yuanyun Wen, Dawei Fan, Wenge Zhou. Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton[J]. 地学前缘, 2021, 12(2): 896-906. DOI: 10.1016/j.gsf.2020.03.008
Zhilin Ye, Fang Wan, Neng Jiang, Jingui Xu, Yuanyun Wen, Dawei Fan, Wenge Zhou. Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton[J]. Geoscience Frontiers, 2021, 12(2): 896-906. DOI: 10.1016/j.gsf.2020.03.008
Citation: Zhilin Ye, Fang Wan, Neng Jiang, Jingui Xu, Yuanyun Wen, Dawei Fan, Wenge Zhou. Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton[J]. Geoscience Frontiers, 2021, 12(2): 896-906. DOI: 10.1016/j.gsf.2020.03.008

Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton

基金项目: 

We would like to thank two anonymous reviewers for their thorough and helpful comments. This project was supported by the National Natural Science Foundation of China (Grant Nos. 41772043 and 41802043), the Chinese Academy of Sciences “Light of West China” Program (Dawei Fan, 2017 and Jingui Xu, 2019), and the Youth Innovation Promotion Association CAS (Dawei Fan, 2018434), and the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province (Dawei Fan, [2019] 10).

详细信息
    通讯作者:

    Dawei Fan,E-mail:fandawei@vip.gyig.ac.cn

    Wenge Zhou,E-mail:zhouwenge@vip.gyig.ac.cn

Dehydration melting of amphibolite at 1.5 GPa and 800-950 ℃: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton

Funds: 

We would like to thank two anonymous reviewers for their thorough and helpful comments. This project was supported by the National Natural Science Foundation of China (Grant Nos. 41772043 and 41802043), the Chinese Academy of Sciences “Light of West China” Program (Dawei Fan, 2017 and Jingui Xu, 2019), and the Youth Innovation Promotion Association CAS (Dawei Fan, 2018434), and the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province (Dawei Fan, [2019] 10).

  • 摘要: Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites. However, the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks. In this work, we performed partial melting experiments at 1.5 GPa and 800-950 ℃ on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area, northern margin of the North China Craton. The experimental melts range from granitic to granodioritic compositions, with SiO2=56.4-72.6 wt.%, Al2O3=16.1-19.3 wt.%, FeO*=2.4-9.6 wt.%, MgO=0.3-2.0 wt.%, CaO=0.6-3.8 wt.%, Na2O=4.7-5.3 wt.%, and K2O=2.6-3.9 wt.%, which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks, except for the higher Al2O3 contents and the data point at 1.5 GPa and 800 ℃. Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr (849-1067 ppm) and light rare earth elements (LREEs) and poor in Y (<10.4 ppm) and Yb (<0.88 ppm), and have high Sr/Y (102-221) and (La/Yb)n (27-41) ratios and strongly fractionated rare earth element (REE) patterns, whereas no obvious negative Eu anomalies are observed. The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area, especially adakites with low Mg#, again except for the data point at 1.5 GPa and 800 ℃. The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg# in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850-950 ℃. The experimental restites consist of hornblende (Hbl) + plagioclase (Pl) + garnet (Grt)±clinopyroxene (Cpx), a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx + orthopyroxene (Opx) + Pl±Grt. Chemically, the experimental restites contain higher Al2O3 but lower MgO and CaO than the Hannuoba mafic granulite xenoliths. We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
    Abstract: Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites. However, the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks. In this work, we performed partial melting experiments at 1.5 GPa and 800-950 ℃ on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area, northern margin of the North China Craton. The experimental melts range from granitic to granodioritic compositions, with SiO2=56.4-72.6 wt.%, Al2O3=16.1-19.3 wt.%, FeO*=2.4-9.6 wt.%, MgO=0.3-2.0 wt.%, CaO=0.6-3.8 wt.%, Na2O=4.7-5.3 wt.%, and K2O=2.6-3.9 wt.%, which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks, except for the higher Al2O3 contents and the data point at 1.5 GPa and 800 ℃. Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr (849-1067 ppm) and light rare earth elements (LREEs) and poor in Y (<10.4 ppm) and Yb (<0.88 ppm), and have high Sr/Y (102-221) and (La/Yb)n (27-41) ratios and strongly fractionated rare earth element (REE) patterns, whereas no obvious negative Eu anomalies are observed. The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area, especially adakites with low Mg#, again except for the data point at 1.5 GPa and 800 ℃. The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg# in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850-950 ℃. The experimental restites consist of hornblende (Hbl) + plagioclase (Pl) + garnet (Grt)±clinopyroxene (Cpx), a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx + orthopyroxene (Opx) + Pl±Grt. Chemically, the experimental restites contain higher Al2O3 but lower MgO and CaO than the Hannuoba mafic granulite xenoliths. We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
  • [1]

    Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144-146.

    [2]

    Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J. Petrol. 32, 365-401.

    [3]

    Chen, B., Jahn, B.M., Suzuki, K., 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: tectonic implications. Geology 41 (1), 91-94.

    [4]

    Chen, S.H., O’Reilly, S.Y., Zhou, X.H., Griffin, W.L., Zhang, G.H., Sun, M., Feng, J.L., Zhang, M., 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos 56 (4), 267-301.

    [5]

    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature 347, 662-665.

    [6]

    Ding, D.S., Chen, L., Gong, E.P., Zhao, X.F., 2019. Zircon U-Pb age, geochemical, and SrNd-O isotopic constraints on the origin of the youngest Mesozoic adakitic dikes in Jiaodong peninsula, North China Craton: implications for Early Cretaceous crustal evolution. Int. Geol. Rev. 175-176, 244-254.

    [7]

    Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., Hu, S., 2002.Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Newsl. 26, 181-196.

    [8]

    Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature 432, 892-897.

    [9]

    Hawthorne, F.C., Oberti, R., Martin, R.F., Harlow, G.E., Maresch, W.V., Schumacher, J.C., Welch, M.D., 2012. Nomenclature of the amphibole supergroup. Am. Mineral. 97, 2031-2048.

    [10]

    He, X.F., Santosh, M., Ganguly, S., 2017. Mesozoic felsic volcanic rocks from the North China craton: intraplate magmatism associated with craton destruction. Geol. Soc.Am. Bull. 129 (7-8), 947-969.

    [11]

    He, H.L., Yu, S.Y., Song, X.Y., Du, Z.S., Dai, Z.H., Zhou, T., Xie, W., 2016. Origin of nelsonite and Fe-Ti oxides ore of the Damiao anorthosite complex, NE China:evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite. Ore Geol. Rev. 79, 367-381.

    [12]

    Huang, F.A., He, Y.S., 2010. Partial melting of the dry mafic continental crust:implications for petrogenesis of C-type adakites. Chin. Sci. Bull. 55 (22), 2428-2439.

    [13]

    Jiang, N., 2005. Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China craton. J. Geol. Soc. 162, 203-215.

    [14]

    Jiang, N., Liu, Y.S., Zhou, W.G., Yang, J.H., Zhang, S.Q., 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochem.Cosmochim. Acta 71, 2591-2608.

    [15]

    Kay, R.W., 1978. Aleutian magnesian andesites-melts from subducted Pacific ocean crust.J. Volcanol. Geoth. Res. 4, 117-132.

    [16]

    Liu, J., Zhang, J., Liu, Z.H., Yin, C.Q., Zhao, C., Peng, Y.B., 2018. Petrogenesis of Jurassic granitoids at the northeastern margin of the North China Craton: new geochemical and geochronological constraints on subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 158, 287-300.

    [17]

    Liu, Y.S., Gao, S., Jin, S., Hu, S.Y., Sun, M., Zhao, Z.B., Feng, J.L., 2001. Geochemistry of lower crustal xenoliths from Neocene Hannuoba basalt, North China craton:implications for petrogenesis and lower crustal composition. Geochem. Cosmochim.Acta 65, 2589-2604.

    [18]

    Liu, Y.S., Gao, S., Yuan, H.L., Zhou, L., Liu, X.M., Wang, X.C., Hu, Z.C., Wang, L.S., 2004.U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem. Geol. 211, 87-109.

    [19]

    Liu, Y.S., Gao, S., Aeolus Lee, C.-T.A., Hua, S.H., Liu, X.M., Yuan, H.L., 2005.Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci. Lett. 234, 39-57.

    [20]

    Ma, Q., Zheng, J.P., Xu, Y.G., Griffin, W.L., Zhang, R.S., 2015. Are continental "adakites" derived from thickened or foundered lower crust? Earth Planet Sci. Lett. 419, 125-133.

    [21]

    Macpherson, C.G., Dreher, S., Matthew, T., Thirlwall, F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci. Lett. 243, 581-593.

    [22]

    Martin, H., 1999. Adakitic magmas: modern analogues of Archean granitoids. Lithos 46, 411-429.

    [23]

    Morgan, G.B. VI, London, D., 2005. Effect of current density on the electronmicroprobe analysis of alkali aluminosilicate glasses. American Mineralogist 90, 1131-1138.

    [24]

    Qian, Q., Hermann, J., 2013. Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation. Contrib. Mineral. Petrol. 165, 1195-1224.

    [25]

    Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1-25.

    [26]

    Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling. J. Petrol. 36 (4), 891-931.

    [27]

    Rapp, R.P., Xiao, L., Shimizu, N., 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Ecol. Sin. 18, 293-302.

    [28]

    Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605-609.

    [29]

    Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent condition. Contrib. Mineral. Petrol. 107, 41-59.

    [30]

    Sato, M., Shuto, K., Uematsu, M., Takahashi, T., Ayabe, M., Takanashi, K., Ishimoto, H., Kawabata, H., 2013. Origin of late oligocene to middle miocene adakitic andesites, high magnesian andesites and basalts from the back-arc margin of the SW and NE Japan arcs. J. Petrol. 54 (3), 481-524.

    [31]

    Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117, 394-409.

    [32]

    Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J.(Eds.), Magmatism in the Ocean Basins, Spec. Publ. 42. The Geological Society of London, pp. 313-345.

    [33]

    Wang, Q., McDermott, F., Xu, J.F., Bellon, H., Zhu, Y.T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33, 465-468.

    [34]

    Winther, K.T., 1996. An experimental based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol. 127, 43-59.

    [35]

    Wolf, M.B., Wyllie, P.J., 1991. Dehydration melting of solid amphibolite at 10 kbar:textural development, liquid interconnectivity and applications to the segregation of magmas. Mineral. Petrol. 44, 151-179.

    [36]

    Wolf, M.B., Wyllie, P.J., 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol. 115, 369-383.

    [37]

    Wilde, S.A., Zhou, X.H., Nemchin, A.A., Sun, M., 2003. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31, 817-820.

    [38]

    Xie, H.S., Zhang, Y.M., Xu, H.G., 1993. A new method of measurement for elastic wave velocities in minerals and rock at high T and P and its significance. Sci. China, Ser. A 36 (10), 1276-1280.

    [39]

    Xiong, X.L., Liu, X.C., Zhu, Z.M., Li, Y., Xiao, W.S., Song, M.S., Zhang, S., Wu, J.H., 2011.Adakitic rocks and destruction of the North China Craton: evidence from experimental petrology and geochemistry. Sci. China Earth Sci. 54 (6), 858-870.

    [40]

    Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q.A., Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30, 1111-1114.

    [41]

    Xu, W.L., Hergt, J.A., Gao, S., Pei, F.P., Wang, W., Yang, D.B., 2008. Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci. Lett. 265 (1-2), 123-137.

    [42]

    Yang, D.B., Xu, W.L., Zhao, G.C., Huo, T.F., Shi, J.P., Yang, H.T., 2016. Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton. Gondwana Res. 38, 220-237.

    [43]

    Zhang, C., Holtz, F., Koepkea, J., Eric Wolff, P.E., Changqian Ma, C.Q., Jean, H., Bédard, J.H., 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Res. 231, 206-217.

    [44]

    Zhang, G.H., Zhou, X.H., Sun, M., Chen, S.H., Feng, J.L., 1998. Highly chemical heterogeneity in the lower crust and crust-mantle transitional zone: geochemical evidences from xenoliths in Hannuoba basalt, Hebei province. Geochimica 27, 153-169 (in Chinese).

    [45]

    Zhou, W.G., Xie, H.S., Liu, Y.G., Zheng, X.G., Zhao, Z.D., Zhou, H., 2005. Dehydration melting of solid amphibolite at 2.0 GPa: effects of time and temperature. Science in China (Series D) 48 (8), 1120-1133.

  • 期刊类型引用(10)

    1. Lirong, T., Shuyun, C., Wenyuan, L. et al. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust | [大 陆 深 部 地 壳 脱 水 熔 融 与 水 致 熔 融 的 演 化 特 征 及 其流 变 学 意 义]. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2024, 49(6): 2001-2023. 百度学术
    2. Pereira, F.S., Lafon, J.-M., Rosa, M.D.L.D.S. et al. Constraints on the source and petrogenesis of early Ediacaran shoshonitic mafic magmatism and high-K calc-alkaline granitoids in the Sergipano Orogenic System, Borborema Province, Brazil. Precambrian Research, 2024. 必应学术
    3. Wang, K., Li, Y., Xiao, W. et al. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic granitoids along the Solonker suture zone in Inner Mongolia, China: Constraints on bidirectional subduction and closure timing of the Paleo-Asian Ocean. Gondwana Research, 2024. 必应学术
    4. Arndt, N.. How did the continental crust form: No basalt, no water, no granite. Precambrian Research, 2023. 必应学术
    5. Choi, S.H., Kim, J.-I. Emplacement ages and petrogenesis of the Sunchang and Namwon granitoids, South Korea. Lithos, 2023. 必应学术
    6. Guo, X., Chen, S., Song, Y. et al. Origin of the high conductivity anomalies in the mid-lower crust of the Tibetan Plateau: Dehydration melting of garnet amphibolites. Lithos, 2023. 必应学术
    7. Meng, J., Lü, T., Fang, B. et al. Laser sampling: Implications for matrix effect in the analysis of laser ablation inductively coupled plasma mass spectrometry. Optics and Laser Technology, 2022. 必应学术
    8. Marimon, R.S., Hawkesworth, C.J., Dantas, E.L. et al. The generation and evolution of the Archean continental crust: The granitoid story in southeastern Brazil. Geoscience Frontiers, 2022, 13(4): 101402. 必应学术
    9. Ye, Z., Fan, D., Tang, Q. et al. Constraining the density evolution during destruction of the lithospheric mantle in the eastern North China Craton. Gondwana Research, 2021. 必应学术
    10. Du, J., Zhang, B., Zou, B. et al. High pressure geochemistry: Preface. Geoscience Frontiers, 2021, 12(2): 893-895. 必应学术

    其他类型引用(1)

  • 其他相关附件

计量
  • 文章访问数:  407
  • HTML全文浏览量:  111
  • PDF下载量:  2
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2020-02-19
  • 网络出版日期:  2021-03-08
  • 发布日期:  2021-03-08

目录

    /

    返回文章
    返回