Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials
Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials
-
摘要: Crushing of grains can greatly influence the strength, dilatancy, and stress-strain relationship of rockfill materials. The critical state line (CSL) in the void ratio versus mean effective stress plane was extended to the breakage critical state plane (BCSP). A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP. Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio- pressure index, which was also incorporated into the formulations of the bounding stress ratio and plastic modulus. A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials, and was shown to sufficiently capture the breakage phenomenon.Abstract: Crushing of grains can greatly influence the strength, dilatancy, and stress-strain relationship of rockfill materials. The critical state line (CSL) in the void ratio versus mean effective stress plane was extended to the breakage critical state plane (BCSP). A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP. Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio- pressure index, which was also incorporated into the formulations of the bounding stress ratio and plastic modulus. A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials, and was shown to sufficiently capture the breakage phenomenon.