The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence

Yanan Zhou, Xin Cheng, Yiying Wu, Vadim Kravchinsky, Ruiqi Shao, Weijie Zhang, Bitian Wei, Ruiyao Zhang, Fanrong Lu, Hanning Wu

Yanan Zhou, Xin Cheng, Yiying Wu, Vadim Kravchinsky, Ruiqi Shao, Weijie Zhang, Bitian Wei, Ruiyao Zhang, Fanrong Lu, Hanning Wu. The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence[J]. 地学前缘, 2019, 10(6): 2313-2327. DOI: 10.1016/j.gsf.2019.05.003
引用本文: Yanan Zhou, Xin Cheng, Yiying Wu, Vadim Kravchinsky, Ruiqi Shao, Weijie Zhang, Bitian Wei, Ruiyao Zhang, Fanrong Lu, Hanning Wu. The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence[J]. 地学前缘, 2019, 10(6): 2313-2327. DOI: 10.1016/j.gsf.2019.05.003
Yanan Zhou, Xin Cheng, Yiying Wu, Vadim Kravchinsky, Ruiqi Shao, Weijie Zhang, Bitian Wei, Ruiyao Zhang, Fanrong Lu, Hanning Wu. The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence[J]. Geoscience Frontiers, 2019, 10(6): 2313-2327. DOI: 10.1016/j.gsf.2019.05.003
Citation: Yanan Zhou, Xin Cheng, Yiying Wu, Vadim Kravchinsky, Ruiqi Shao, Weijie Zhang, Bitian Wei, Ruiyao Zhang, Fanrong Lu, Hanning Wu. The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence[J]. Geoscience Frontiers, 2019, 10(6): 2313-2327. DOI: 10.1016/j.gsf.2019.05.003

The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence

基金项目: 

Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant Nos. 91855211, 41421002, 41674070, 41702233, and 41774073), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 17JK0784), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JQ4027), and the Natural Sciences and Engineering Research Council of Canada (NSERC grant RGPIN-2019-04780). We thank Academicians Rixiang Zhu and Lin Ding, Profs. M. Santosh, Baochun Huang and Yunpeng Dong, and Drs. Yonggang Yan and Jie Zhao. We also thank the editors and three anonymous reviewers who provided useful comments that led to improvement of the manuscript.

详细信息
    通讯作者:

    Hanning Wu,wuhn2506@nwu.edu.cn

The northern Qiangtang Block rapid drift during the Triassic Period: Paleomagnetic evidence

Funds: 

Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant Nos. 91855211, 41421002, 41674070, 41702233, and 41774073), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 17JK0784), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JQ4027), and the Natural Sciences and Engineering Research Council of Canada (NSERC grant RGPIN-2019-04780). We thank Academicians Rixiang Zhu and Lin Ding, Profs. M. Santosh, Baochun Huang and Yunpeng Dong, and Drs. Yonggang Yan and Jie Zhao. We also thank the editors and three anonymous reviewers who provided useful comments that led to improvement of the manuscript.

  • 摘要: As one of the pivotal Gondwana-derived blocks, the kinematic history of the northern Qiangtang Block (in the Tibetan Plateau) remains unclear, mainly because quantitative paleomagnetic data to determine the paleoposition are sparse. Thus, for this study, we collected 226 samples (17 sites) from Triassic sedimentary rocks in the Raggyorcaka and Tuotuohe areas of the northern Qiangtang Block (NQB). Stepwise demagnetization isolated high temperature/field components from the samples. Both Early and Late Triassic datasets passed field tests at a 99% confidence level and were proved to be primary origins. Paleopoles were calculated to be at 24.9°N and 216.5°E with A95=8.2°(N=8) for the Early Triassic dataset, and at 68.1°N, 179.9°E with A95=5.6° (N=37) for the Late Triassic, the latter being combined with a coeval volcanic dataset published previously. These paleopoles correspond to paleolatitudes of 14.3°S±8.2° and 29.9°N±5.6°, respectively. Combining previously published results, we reconstructed a three-stage northward drift process for the NQB. (1) The northern Qiangtang Block was located in the subtropical part of the southern hemisphere until the Early Triassic; (2) thereafter, the block rapidly drifted northward from southern to northern hemispheres during the Triassic; and (3) the block converged with the Eurasian continent in the Late Triassic. The ~4800 km northward movement from the Early to Late Triassic corresponded to an average motion rate of ~11.85 cm/yr. The rapid drift of the NQB after the Early Triassic led to a rapid transformation of the Tethys Ocean.
    Abstract: As one of the pivotal Gondwana-derived blocks, the kinematic history of the northern Qiangtang Block (in the Tibetan Plateau) remains unclear, mainly because quantitative paleomagnetic data to determine the paleoposition are sparse. Thus, for this study, we collected 226 samples (17 sites) from Triassic sedimentary rocks in the Raggyorcaka and Tuotuohe areas of the northern Qiangtang Block (NQB). Stepwise demagnetization isolated high temperature/field components from the samples. Both Early and Late Triassic datasets passed field tests at a 99% confidence level and were proved to be primary origins. Paleopoles were calculated to be at 24.9°N and 216.5°E with A95=8.2°(N=8) for the Early Triassic dataset, and at 68.1°N, 179.9°E with A95=5.6° (N=37) for the Late Triassic, the latter being combined with a coeval volcanic dataset published previously. These paleopoles correspond to paleolatitudes of 14.3°S±8.2° and 29.9°N±5.6°, respectively. Combining previously published results, we reconstructed a three-stage northward drift process for the NQB. (1) The northern Qiangtang Block was located in the subtropical part of the southern hemisphere until the Early Triassic; (2) thereafter, the block rapidly drifted northward from southern to northern hemispheres during the Triassic; and (3) the block converged with the Eurasian continent in the Late Triassic. The ~4800 km northward movement from the Early to Late Triassic corresponded to an average motion rate of ~11.85 cm/yr. The rapid drift of the NQB after the Early Triassic led to a rapid transformation of the Tethys Ocean.
  • [1]

    Aitchison, J.C., Ali, J.R., Davis, A.M., 2007. When and where did India and Asia collide? Journal of Geophysical Research 112(B05423), 1-21.

    [2]

    Allégre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., Burg, J.P., Girardeau, J., Armijo, R., Gariépy, C., Göpel, C., Li, T.D., Xiao, X.C., Chang, C.F., Li, G.Q., Lin, B.Y., Teng, J.W., Wang, N.W., Chen, G.M., Han, T.L., Wang, X.B., Den, W.M., Sheng, H.B., Cao, Y.G., Zhou, J., Qiu, H.G., Bao, P.S., Wang, S.C., Wang, B.X., Zhou, Y.X., Xu, R.H., 1984.

    [3]

    Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 17-22. An, X.Y., 2014. Analysis of Sedimentary Facies Characteristic and Provenance Upper Permian to Middle Triassic in the Northern Qiangtang, Tibet. M.S. thesis. China University of Geosciences, Beijing, p. 59(in Chinese with English abstract). BGMR, 1993. Regional Geology of Xizang(Tibet) Autonomous Region. Geological Publishing House, Beijing (in Chinese with English abstract).

    [4]

    Bian, Q.T., Zheng, X.S., Li, H.S., Sha, J.G., 1997. Age and tectonic setting of ophiolite in the Hoh Xil region Qinghai Province. Geological Review 43(4), 347-355(in Chinese with English abstract).

    [5]

    Calais, E., Vergnolle, M., San'kov, V., Lukhnev, K., Miroshnitchenko, A., Amarjargal, S., Déverchère, J., 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002):Implications for current kinematics of Asia. Jour-nal of Geophysical Research 108(B10), 2501-2514.

    [6]

    Cao, Y., Sun, Z.M., Li, H.B., Pei, J.L., Liu, D.L., Lei, Z., Ye, X.Z., Zheng, Y., He, X.L., Ge, C.L., Jiang, W., 2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane, Tibet:constraints on the evolution of the Bangong-Nujiang ocean. Tectonics 38(1), 215-232.

    [7]

    Chang, C.F., Zheng, H.L., 1973. Some tectonic features of the Mt. JolmoLungma area, southern Tibet, China. Science China Earth Sciences XVI (2), 257-265.

    [8]

    Chen, W.W., Zhang, S.H., Ding, J.K., Zhang, J.H., Zhao, X.X., Zhu, L.D., Yang, W.G., Yang, T.S., Li, H.Y., Wu, H.C., 2017. Combined paleomagnetic and geochrono-logical study on Cretaceous strata of the Qiangtang terrane, central Tibet. Gondwana Research 41, 373-389.

    [9]

    Chen, X.W., Wang, J., 2009. Correlation of upper Triassic strata in Qiangtang basin, northern Tibet. Geology in China 36(4), 682-693(in Chinese with English abstract).

    [10]

    Chen, Y., Cogne, J.P., Courtillot, V., 1993. Cretaceous paleomagnetic results from western Tibet and tectonic implications. Journal of Geophysical Research 98(B10), 17981-17999.

    [11]

    Cheng, X., Wu, H., Diao, Z., Wang, H., Ma, L., Zhang, X., Yang, G., Hong, J., Ji, W., Li, R., Chen, S., Zhao, Z., 2013. Paleomagnetic data from the Late CarboniferouseLate Permian rocks in eastern Tibet and their implications for tectonic evolution of the northern Qiangtang-Qamdo block. Science China Earth Sciences 56(7), 1209-1220.

    [12]

    Cheng, X., Wu, H., Guo, Q., Hou, B., Xia, L., Wang, H., Diao, Z., Huo, F., Ji, W., Li, R., Chen, S., Zhao, Z., Liu, X., 2012a. Paleomagnetic results of late Paleozoic rocks from northern Qiangtang block in QinghaieTibet plateau, China. Science China Earth Sciences 55(1), 67-75.

    [13]

    Cheng, X., Wu, H.N., Diao, Z.B., Wang, H.J., Zhang, X.D., Ma, Lun, Zhou, Y.N., Kang, W.W., Ji, W.H., Li, R.S., Chen, S.J., Zhao, Z.M., 2012b. Newpaleomagnetic result of Middle lateJurassic rocks from northern Qiangtang block, west China. Chinese Journal of Geophysics 55(10), 399-409(in Chinese with English abstract).

    [14]

    Dai, J.G., Zhao, X.X., Wang, C.S., Zhu, L.D., Li, Y.L., Finn, D., 2012. The vast proto-Tibetan plateau:new constraints from Paleogene Hoh Xil basin. Gondwana Research 22, 434-446.

    [15]

    Dan, W., Wang, Q., William, M.W., Zhang, X.Z., Tang, G.J., Jiang, Z.Q., Hao, L.L., Ou, Q., 2018. Rapid formation of eclogites duringa nearly closed ocean:revisiting the Pianshishaneclogite in Qiangtang, central TibetanPlateau. Chemical Geology 477, 112-122.

    [16]

    Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites:grain-size and compositional dependence. Physics of the Earth and Planetary Interiors 13(4), 260-267.

    [17]

    Dewey, J.F., Shackelton, R.M., Chang, C., Sun, Y., 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London A327, 379-413.

    [18]

    Ding, L., Li, Z.Y., Song, P.P., 2017. Core fragments of Tibetan plateau from Gondwa-naland united in northern hemisphere. Progress of comprehensive scientific research on Tibetan plateau, China special issue. Bulletin of Chinese Academy of Sciences 9, 945-950(in Chinese with English abstract).

    [19]

    Ding, L., Yang, D., Cai, F.L., Pullen, A., Kapp, P., Gehrels, G.E., Zhang, Y.L., Zhang, H.Q., Lai, Z.Q., Yue, H.Y., Shi, R.D., 2013. Provenance analysis of the Mesozoic Hoh-Xil-songpan-Ganziturbidites in northern Tibet:implications for the tectonicevo-lution of the eastern paleo-Tethys Ocean. Tectonics 32, 34-38.

    [20]

    Domeier, M., Torsvik, T.H., 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5(3), 303-350.

    [21]

    Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc):1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107(B3), 2056.

    [22]

    Dupont-Nivet, G., van Hinsbergen, D.J.J., Torsvik, T.H., 2010. Persistently low Asian paleolatitudes, implications for the IndiaeAsia collision history. Tectonics 29, 1-19.

    [23]

    Fan, J.J., Li, C., Sun, Z.M., Xu, W., Xie, C.M., 2018. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet:evidence for ridge subduction in the BangongeNujiang Tethyan ocean. Journal of Asian Earth Sciences 154(1), 187-201.

    [24]

    Fan, J.J., Li, C., Xie, C.M., Liu, Y.M., Xu, J.X., Chen, J.W., 2017. Remnants of late Permian-middle Triassic ocean islands in northern Tibet:implications for the late-stage evolution of the paleo-Tethys Ocean. Gondwana Research 44, 7-21.

    [25]

    Fisher, R.A., 1953. Dispersion on a sphere. Proceedings of the Royal Society of London A 217, 295-305.

    [26]

    Fu, G.X., Wang, J., Tan, F.W., 2013. The geological meaning of the late Triassic sedimentary transformation of Qiantang basin in northern Tibet. Geological Review 59, 208-209(in Chinese).

    [27]

    Fu, X.G., Wang, J., Chen, W.B., Feng, X.L., 2010. Age and tectonic implications of the Late Triassic NadiKangti volcanic rocks in the Qiangtang basin, northern Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition) 37(6), 605-615(in Chinese with English abstract).

    [28]

    Golonka, J., Ford, D., 2000. Pangean (late Carboniferous-middle Jurassic) paleo-environment and lithofacies. Palaeogeography, Palaeoclimatology, Palae-oecology 161, 1-34.

    [29]

    Guo, Z.W., 2013. Composite Stratigraphic Study of the Late Permian-Middle Triassic Strata in the Northern Qiangtang, Mayer Kangri District, Tibet. M.S. thesis. China University of Geosciences, Beijing, p. 57(in Chinese with English abstract).

    [30]

    Huang, B.C., Chen, J.S., Yi, Z.Y., 2010. Paleomagnetic discussion of when and where India and Asia initially collided. Chinese Journal of Geophysics 53, 2045-2058(in Chinese with English abstract).

    [31]

    Huang, B.C., Yan, Y.G., Piper, J.D.A., Zhang, D.H., Yi, Z.Y., Yu, S., Zhou, T.H., 2018. Paleomagnetic constraints on the paleogeography of the east Asian blocks during late Paleozoic and early Mesozoic times. Earth-Science Reviews 186, 8-36.

    [32]

    Huang, J.Q., Chen, B.W., 1987. The Evolutional of Tethys in China and Adjacent Re-gions. Geology Publishing House, Beijing, p. 190(in Chinese).

    [33]

    Huang, K., Opdyke, N.D., Li, J., Peng, X., 1992a. Paleomagnetism of Cretaceous rocks from eastern Qiangtang terrane of Tibet. Journal of Geophysical Research:Solid Earth 97, 1789-1799.

    [34]

    Huang, K., Opdyke, N.D., Peng, X.J., Li, J.G., 1992b. Paleomagnetic result from the upper Permian of the eastern Qiangtang terrane of Tibet and their tectonic implications. Earth and Planetary Science Letters 111, 1-10.

    [35]

    Huang, S., 2012. Paleomagnetic Investigations on the Cretaceous Volcanic Rocks in South China Block. Ph. D. thesis. Graduate University of Chinese Academy of Sciences, p. 103(in Chinese with English abstract).

    [36]

    Jackson, M.J., Banerjee, S.K., Marvin, J.A., Lu, R., Gruber, W., 1991. Detrital remanence, inclination errors, and anhysteretic remanence anisotropy, quantitative model and experimental results. Geophysical Journal International 104(1), 95-103.

    [37]

    King, R.F., 1955. The remanent magnetism of artificially deposited sediment. Geophysical Journal International 7(s3), 115-134.

    [38]

    Kirschvink, J.L., 1980. The leastesquare line and plane and the analysis of paleo-magnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699-718.

    [39]

    Kodama, K.P., Sun, W.W., 1992. Magnetic anisotropy as a correction for compaction-caused palaeomagnetic inclination shallowing. Geophysical Journal Interna-tional 111(3), 465-469.

    [40]

    Lei, Z.Y., Li, Y.T., Liu, Z., Lu, B., 2001. Structural deformation and dynamic mechanism of the Qiangtang basin, north Tibet. Geological Review 47(4), 415-419.

    [41]

    Li, C., Zhai, G.Y., Wang, L.Q., Yin, F.G., Mao, X.C., 2009. An important window for understanding the Qinghai-Tibet Plateau-a review on research progress in recent years of Qiangtang area, Tibet, China. Geological Bulletin of China 28(9), 1169-1177(in Chinese with English abstract).

    [42]

    Li, C., Zheng, A., 1993. Paleozoic stratigraphy in the Qiangtang region of Tibet:re-lations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous. International Geological Reviews 35(9), 797-804.

    [43]

    Li, S.P., Wang, Y.Z., Shen, C.X., Xu, C.Q., Qi, S.S., Zeng, X.P., 2007. Geochemical char-acteristics of the late Permian-early Triassic continental volcanic rocks in the Zadoi area, northern Qiantang, Tibet plateau. Geological Bulletin of China 26(6), 675-681(in Chinese with English abstract).

    [44]

    Li, Y.L., Wang, C.S., Huang, J.J., 2008. Deformation characteristics and finalizing age of the folds in the Qiangtang Basin angle their relations to oil and gas accu-mulation. Oil & Gas Geology 29(3), 283-290(in Chinese with English abstract).

    [45]

    Li, Y.L., Wang, C.S., Zhao, X.X., Yin, A., Ma, C., 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research 22, 482-492.

    [46]

    Li, J.T., Liang, B., He, W.J., Xu, G., Weng, L., Xie, Q.X., 2016a. Geological and tectonic evolution of the basement in the Qiangtang basin of northern Tibet:evidence from detrital zircon U-Pb isotope chronology of sandstone in the Jurassic Yanshipin Group. Geology in China 43(4), 216-1226(in Chinese with English abstract).

    [47]

    Li, Z.Y., Ding, L., Lippert, P.C., Song, P.P., Yue, Y.H., van Hinsbergen, D.J.J., 2016b. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology 44, 727-730.

    [48]

    Li, Z.Y., Ding, L., Song, P.P., Fu, J.J., Yue, Y.H., 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous:implications for the onset of IndiaeAsia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Research 41, 352-372.

    [49]

    Liebke, U., Appel, E., Ding, L., Neumann, U., Antolin, B., Xu, Q., 2010. Position of the Lhasa terrane prior to IndiaeAsia collision derived from palaeomagnetic in-clinations of 53 Ma old dykes of the Linzhou Basin:constraints on the age of collision and postcollisional shortening within the Tibetan Plateau. Geophysical Journal International 182, 1199-1215.

    [50]

    Lin, J., Watts, D.R., 1988. Palaeomagnetic results from the Tibetan plateau. Philo-sophical Transactions of the Royal Society of London,Series A 327, 239-262.

    [51]

    Lippert, P.C., Dupont-Nivet, G., van Hinsbergen, D.J.J., Zhao, X., Coe, R.S., Kapp, P., 2010. The Paleogene latitude of Asia and the proto-Tibetan plateau. Open-File Report 2010-1099. In:Leech, M.L., others (Eds.), Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop. U.S. Geological Survey, 2pp.

    [52]

    Liu, Y., Sun, K.Q., 2008. Study on the Permian paleophytogeographical provinces in Xizang (Tibet). Geological Review 54(3), 289-295(in Chinese with English abstract).

    [53]

    Liu, Y., Li, R.S., Ji, W.H., Pan, S.J., Chen, F.N., Zhang, H.D., 2014. The pairing rela-tionship between ophiolite and arc volcanic rocks along western Jinsha River suture zone and its geological significance:evidence from geochemistry and LA-ICP-MS zircon U-Pb dating. Geological Bulletin of China 33(7), 1076-1088(in Chinese with English abstract).

    [54]

    Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159-162.

    [55]

    Ma, Y.M., Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Wei, Dan, Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomag-netic constraints on the origin and drift history of the north Qiangtang terrane in the late Paleozoic. Geophysical Research Letters 46, 689-697.

    [56]

    McElhinny, M., 1964. Statistical significance of the fold test in paleomagnetism. Geophysical Journal International 8, 338-340.

    [57]

    McFadden, P., 1990. A new fold test for palaeomagnetic studies. Geophysical Journal International 103, 163-169.

    [58]

    Metcalfe, I., 1996. Gondwanaland and dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences 43, 605-623.

    [59]

    Metcalfe, I., 2013. Gondwana dispersion and Asian accretion:tectonic and palae-ogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 1-33.

    [60]

    Otofuji, Y., Inoue, Y., Funahara, S., Murata, F., Zheng, X., 1990. Palaeomagnetic study of eastern Tibet-deformation of the three rivers region. Geophysical Journal International 103, 85-94.

    [61]

    Pan, G.T., Wang, L.Q., Li, R.S., Yuan, S.H., Ji, W.H., Yin, F.G., Zhang, W.P., Wang, B.D., 2012. Tectonic evolution of the QinghaieTibet plateau. Journal of Asian Earth Sciences 53, 3-14.

    [62]

    Pearce, J.A., Mei, H., 1988. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud. Philosophical Transactions of the Royal Society, Mathematical, Physical Engineer Science 327, 169-201.

    [63]

    Pullen, A., Kapp, P., 2014. Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane:insights from the Qiangtang metamorphic belt, central Tibet. Geological Society of London Specical Publications and remove dot 507, 71-87.

    [64]

    Qinghai BGMR, Qinghai Bureau of Geology and Mineral Resources, 2005. 1:250,000 Regional Geology of the Tuotuohe Region. Geological Publishing House, Beijing (in Chinese).

    [65]

    Qu, L.H., Liu, X.F., Li, J.S., Qi, L.J., 2015. Geochemical characteristics of sedimentary rocks from the Triassic Kanglu Formation, north Qiangtang basin (Tibet):im-plications for provenance tectonic setting. Geoscience 29(4), 789-803(in Chinese with English abstract).

    [66]

    Ran, B., Deng, B., Wang, C.S., Zhao, X.X., Li, Y.L., Zhang, Y.X., Meng, J., He, M., Zhu, L.D., Xiao, C., 2017. Kinematics of the crust around the Tanggula Shan in northecentral Tibet:constraints from paleomagnetic data. Gondwana Research 48, 124-133.

    [67]

    Ran, B., Wang, C.S., Zhao, X.X., Li, Y.L., He, M., Zhu, L.D., Coe, R.S., 2012. New paleomagnetic results of the early Permian in the Xainza area, Tibetan Plateau and their paleogeographical implications. Gondwana Research 22, 447-460.

    [68]

    Ren, J.S., Xiao, L.W., 2004. Lifting the mysterious veil of the tectonics of the QinghaieTibet Plateau by 1:250000 geological mapping. Geological Bulletin 23(1), 1-11(in Chinese with English abstract).

    [69]

    Song, C.Y., Wang, J., Fu, X.G., Feng, X.L., Chen, M., He, L., 2012. Late Triassic palae-omagnetic data from the Qiangtang terrane of Tibet plateau and their tectonic significances. Journal of Jilin University (Earth Science Edition) 42(2), 526-535(in Chinese with English abstract).

    [70]

    Song, P.P., Ding, L., Li, Z.Y., Lippert, P.C., Yang, T., Zhao, X., Fu, J., Yue, Y., 2015. Late Triassic paleolatitude of the Qiangtang block:implications for the closure of the paleo-Tethys Ocean. Earth and Planetary Science Letters 424, 69-83.

    [71]

    Song, P.P., Ding, L., Li, Z.Y., Lippert, P.C., Yue, Y.H., 2017. An early bird from Gond-wana:paleomagnetism of lower Permian lavas from northern Qiangtang (Tibet) and the geography of the paleo-Tethys. Earth and Planetary Science Letters 475, 119-133.

    [72]

    Sun, Z.M., Cao, Y., Li, H.B., Pei, J.L., Tong, Y.B., Ye, X.Z., Wu, B.L., Cao, X.W., Liu, C.G., 2019. A review of paleomagnetic study of the formation and evolution of the Tibetan plateau. Acta Geoscientica Sinica 40(1), 17-36(in Chinese with English abstract).

    [73]

    Tang, C.Y., Wu, J.H., Wang, G.Q., Zhao, W.Q., Wang, J.X., 2011. Sedimentary evolution of the upper Triassic Jiapila Formation at the Middle Qiangtang basin and its geological significance. Geotectonica et Metallogenia 35(3), 421-428(in Chi-nese with English abstract).

    [74]

    Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Yang, J.S., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science 294, 1671-1677.

    [75]

    Tauxe, L., Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations:was the ancient magnetic field dipolar? In:Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J.M. (Eds.), Timescales of the Paleomagnetic Field:AGU Geophysical Monograph Series, vol. 145, pp. 101-115.

    [76]

    Tong, Y.B., Yang, Z.Y., Gao, L., Wang, H., Zhang, X.D., An, C.Z., Xu, Y.C., Han, Z.R., 2015. Paleomagnetism of upper Cretaceous red-beds from the eastern Qiangtang block:clockwise rotations and latitudinal translation during the IndiaeAsia collision. Journal of Asian Earth Sciences 114, 732-749.

    [77]

    Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., Cocks, L.R.M., 2012. Phanerozoic polar wander, palaeo-geography and dynamics. Earth-Science Reviews 114, 325-368.

    [78]

    Van der Voo, 1990. The reliability of paleomagnetic data. Tectonophysics 184, 1-9. Wang, C.S., Zheng, H.R., Ran, B., Liu, B.P., Li, X.H., Li, Y.L., Sun, H.J., Chen, J.P., Hu, X.M., 2010. On paleogeographic reconstruction, an example for application in Tibetan Tethys. Acta Sedmentologica Sinica 28(5), 849-859(in Chinese with English abstract).

    [79]

    Wang, G.Z., Wang, C.S., 2001. Disintegration and age of basement metamorphic rocks in Qiangtang, Tibet, China. Science China Earth Sciences 44, 86-93.

    [80]

    Wang, J., Fu, X.G., 2018. Sedimentary evolution of the Qiangtang basin. Geology in China 45(2), 237-259(in Chinese with English abstract).

    [81]

    Wang, N.W., 1984. The rise of Gondwana research in China and some key problems on paleobiogeography related to plate tectonics. Bulletin of the Chinese Acad-emy of Geological Sciences 10, 104-114(in Chinese).

    [82]

    Watson, G.S., Enkin, R.J., 1993. The fold test in paleomagnetism as a parameter estimation problem. Geophysical Research Letters 20, 2135-2137.

    [83]

    Weislogel, A.L., 2008. Tectonostratigraphic and geochronologic constraint son evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics 451(1-4), 331-345.

    [84]

    Wu, F.Y., Huang, B.C., Ye, K., Fang, A.M., 2008. Collapsed Himalayan-Tibetan orogeny and the rising Tibetan plateau. Acta Petrologica Sinica 24(1), 1-30(in Chinese with English abstract).

    [85]

    Wu, L., Kravchinsky, V.A., Potter, D.K., 2017a. Apparent polar wander paths of the major Chinese blocks since the Late Paleozoic:toward restoring the amal-gamation history of east Eurasia. Earth-Science Reviews 17, 492-519.

    [86]

    Wu, Y.W., Li, C., Xu, M.J., Xie, C.M., Wang, M., 2017b. Zircon U-Pb age, geochemical data:constraints on the origin and tectonic evolution of the metamafic rocks from Longmuco-Shuanghu-Lancang suture zone, Tibet. Journal of Earth Sci-ences 28(3), 422-432.

    [87]

    Xiao, W.J., Ao, S.J., Yang, L., Han, C.M., Wan, B., Zhang, J.E., Zhang, Z.Y., Li, R., Chen, Z.Y., Song, S.H., 2017. Anatomy of composition and nature of plate convergence:insights for alternative thoughts for terminal India-Eurasia colli-sion. Science China Earth Sciences 60, 1015-1039.

    [88]

    Xiao, W.J., Windley, B., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Chao, Y., Sun, M., Chen, H.L., 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia:oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences 16, 1-16.31.

    [89]

    Xie, C.M., Li, C., Ren, Y.S., Wang, M., Su, L., 2018. Detrital provenance, depositional environment, and palaeogeographic implications of Lower Triassic marine sediments in central Tibet. International Geology Review 60(4), 418-430.

    [90]

    Xu, Y.C., Yang, Z.Y., Tong, Y.B., Wang, H., Gao, L., An, C.Z., 2015. Further paleomag-netic results for lower Permian basalts of the Baoshan Terrane, southwestern China, and paleogeographic implications. Journal of Asian Earth Sciences 104, 99-114.

    [91]

    Yan, M., Zhang, D., Fang, X., Ren, H., Zhang, W., Zan, J., Song, C., Zhang, T., 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block:implications for the evolution of the paleo- and meso-Tethys. Gondwana Research 39, 292-316.

    [92]

    Yan, Y.G., Huang, B.C., Zhang, D.H., Veeravinantanakul, A., 2018. Paleomagnetic study on the Permian rocks of the Indochina Block and its implications for paleogeographic Configuration and northward drifting of Cathaysialand in the paleo-Tethys. Journal of Geophysical Research 128(6), 4523-4538.

    [93]

    Yang, T.S., Ma, Y.M., Zhang, S.H., Bian, W.W., Yang, Z.Y., Wu, H.C., Li, H.Y., Chen, W.W., Ding, J.K., 2015. New insights into the IndiaeAsia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Research 28, 625-641.

    [94]

    Yang, X.F., Cheng, X., Zhou, Y.N., Lun, M.A., Zhang, X.D., 2017. Paleomagnetic results from Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane, Tibet, China, and their tectonic implications. Science China Earth Sci-ences 60(1), 124-134.

    [95]

    Ye, X.H., Li, J.F., 1987. Paleomagnetism and evolution of Tibet plates and Tethys. Journal of Chengdu College of Geology 14(1), 65-79(in Chinese with English abstract).

    [96]

    Yi, Z.Y., Liang, Y.L., Zhao, J., Yan, Y.Y., Chen, L.W., Tan, X.D., 2016. Paleogeography of the northern margin of Indian continent prior to its collision:an investigation of the late Cretaceous limestone in south Tibet. Acta Geologica Sinica 90(11), 3282-3292(in Chinese with English abstract).

    [97]

    Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211-280.

    [98]

    Zeng, X.W., Wang, M., Fan, J.J., Cai, L., Xie, C.M., Liu, Y.M., Zhang, T.Y., 2018. Geochemistry and geochronology of gabbros from the asa ophiolite, Tibet:implications for the early Cretaceous evolution of the Meso-Tethys Ocean. Lithos 320-321, 192-206.

    [99]

    Zhang, D., Huang, B., Zhao, J., Meert, J.G., Zhang, Y., Liang, Y., Bai, Q., Zhou, T., 2018. Permian paleogeography of the eastern CAOB:paleomagnetic constraints from volcanic rocks in central eastern Inner Mongolia, NE China. Journal of Geophysical Research:Solid Earth 123(4), 2559-2582.

    [100]

    Zhang, J., 2017. Combined Paleomagnetic and Geochronological Study on the Late Permian Strata of the Qiangbei-Changdu Block. M.S. thesis. Northwest Univer-sity, p. 68. pp (in Chinese with English abstract).

    [101]

    Zhang, K.J., Tang, X.C., 2009. Eclogites in the interior of the Tibetan plateau and their geodynamic implications. Chinese Science Bulletin 54, 2556-2567.

    [102]

    Zhang, K.J., Zhang, Y.X., Li, B., Zhu, Y.T., Wei, R.Z., 2006. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone:evidence from geochemical comparison with the Jinsa suture. Geology 34, 493-496.

    [103]

    Zhang, P.Z., Wang, Q., Ma, Z.J., 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China. Earth Science Fron-tiers 9(2), 430-441(in Chinese with English abstract).

    [104]

    Zhang, Y.C., Shi, G.R., Shen, S.Z., 2013. A review of Permian stratigraphy, palae-obiogeography and paleogeography of the QinghaieTibet Plateau. Gondwana Research 24, 55-76.

    [105]

    Zhao, J., Huang, B.C., Yan, Y.G., Zhang, D.H., 2015. Late Triassic paleomagnetic result from the Baoshan terrane, West Yunnan of China:implication for orientation of the east Paleotethyssuture zone and timing of the sibumasu-indochina colli-sion. Journal of Asian Earth Sciences 111, 350-364.

    [106]

    Zheng, Y.L., Wang, G.H., Guo, Z.W., Liang, X., Yuan, G.L., Wang, H.D., Huang, B., He, Y.D., 2015. The record of the Pan-African and the Indosinian tectono-thermal event in Qiangtang terrane, northern Tibet:evidence from geochem-ical characteristics and U-Pb geochronology of the metamorphic complex in Ejiumai area. Acta Petrologica Sinica 31(4), 1137-1152(in Chinese with English abstract).

    [107]

    Zhong, D.L., Ding, L., 1996. The process and mechanism of the uplift of the Tibetan Plateau China. Science China Earth Sciences 26(4), 289-295(in Chinese).

    [108]

    Zhou, Y., Cheng, X., Yu, L., Yang, X.F., Su, H.L., Peng, X.M., Xue, Y.K., Li, Y.Y., Ye, Y.K., Zhang, J., Li, Y.Y., Wu, H.N., 2016. Paleomagnetic study on the Triassic rocks from the Lhasa terrane, Tibet, and its paleogeographic implications. Journal of Asian Earth Sciences 121, 108-119.

    [109]

    Zhu, D., Li, S., Cawood, P.A., Wang, Q., Zhao, Z., Liu, S., Wang, L., 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double sub-duction. Lithos 245, 7-17.

    [110]

    Zhu, T.X., Feng, X.T., Wang, X.F., Zhou, M.K., 2010. Late Triassic tectonic-paleogeography of the Qiangtang area on the Qinghai-Xizang plateau. Sedi-mentary Geology and Tethyan 30(4), 1-10(in Chinese with English abstract). Zhu, T.X., Li, Z.L., Li, C., Feng, X.T., Zhang, Q.Y., Zhang, H.H., Lin, S.L., Zeng, Q.R., 2005. New data of Triassic strata in the Shuanghu area, northern Tibet, China. Geological Bulletin of China 25(12), 1127-1134(in Chinese with English abstract).

    [111]

    Zijderveld, J.D.A., 1967. A. C. demagnetization of rocks:analysis of results. In:Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods on Paleomagnetism. Elsevier, Amsterdam, pp. 254-286.

  • 期刊类型引用(27)

    1. Gao, S., Xu, Z., Xie, C. et al. Late Triassic sedimentary environments and detrital zircon provenance analysis in the Amdo area of the Tibetan Plateau: Implications for the evolution of the Meso-Tethys Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 657: 112601. 必应学术
    2. Ma, X., Li, Y., Tan, X. et al. Late Triassic paleolatitude of the Southern Qiangtang terrane, central Tibet: Implications for the closure of the Longmu Co-Shuanghu Paleo-Tethyan Ocean. Journal of Asian Earth Sciences, 2024, 269: 106174. 必应学术
    3. Zhang, Y., Liu, D., Ma, X. et al. Cretaceous southward growth and topographic shaping of the proto-Tibetan Plateau: Insights from low-temperature thermochronology and adakitic rocks. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 644: 112208. 必应学术
    4. Chai, R., Zhou, Y., Wang, T. et al. New Rock Magnetism and Magnetic Fabrics Studies on the Late Triassic Volcanic Rocks from Qaidam Block, Northern Tibetan Plateau. Minerals, 2024, 14(5): 515. 必应学术
    5. Wang, J., Fu, X., Wei, H. et al. An overview of the Qiangtang Basin: Geology, hydrocarbon resources and the role of the Tethyan evolution. Journal of Asian Earth Sciences, 2024, 266: 106128. 必应学术
    6. Cheng, X., Wei, B., Jiang, N. et al. Evolution of the North Qiangtang Block in the late Paleozoic: Paleomagnetism and its tectonic implications. Bulletin of the Geological Society of America, 2024, 136(1-2): 707-724. 必应学术
    7. Wei, B., Cheng, X., Domeier, M. et al. Paleomagnetism of Late Triassic Volcanic Rocks From the South Qiangtang Block, Tibet: Constraints on Longmuco-Shuanghu Ocean Closure in the Paleo-Tethys Realm. Geophysical Research Letters, 2023, 50(19): e2023GL104759. 必应学术
    8. Zhang, Z., Li, H., Zheng, W. et al. Response of Paleogene Fine-Grained Clastic Rock Deposits in the South Qiangtang Basin to Environments and Thermal Events on the Qinghai-Tibet Plateau. ACS Omega, 2023, 8(29): 26458-26478. 必应学术
    9. Li, Z., Li, Y., Tan, X. et al. New palaeomagnetic results of Permian tectonic blocks in the western segment of the Yarlung Zangbo Suture Zone and their tectonic implications. Geological Journal, 2023, 58(7): 2650-2667. 必应学术
    10. Yan, P., Zhang, N., Yuan, H. et al. Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography. Journal of Earth Science, 2023, 34(1): 260-279. 必应学术
    11. Niu, C., Ma, Y., Wang, H. et al. The Cretaceous stationary Lhasa terrane constrained by the paleolatitude of 103 Ma volcanic rocks from the Nima area. Global and Planetary Change, 2023, 220: 103998. 必应学术
    12. Wei, B., Cheng, X., Domeier, M. et al. Placing Another Piece of the Tethyan Puzzle: The First Paleozoic Paleomagnetic Data From the South Qiangtang Block and Its Paleogeographic Implications. Tectonics, 2022, 41(10): e2022TC007355. 必应学术
    13. Hu, X., Ma, A., Xue, W. et al. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 2022, 229: 104031. 必应学术
    14. Yu, L., Yan, M., Guan, C. et al. Remagnetization of Carboniferous Limestone in the Zaduo Area, Eastern Qiangtang Terrane, and Its Tectonic Implications. Frontiers in Earth Science, 2022, 10: 825943. 必应学术
    15. Jiang, N., Wu, H., Li, Y. et al. Preliminary paleomagnetic results of the Early-Middle Silurian rocks from North Qiangtang Terrane, and its tectonic implications | [羌北地块早-中志留世古地磁学初步研究结果及其构造意义]. Acta Geophysica Sinica, 2022, 65(3): 1057-1070. 百度学术
    16. Fu, Q., Yan, M., Dekkers, M.J. et al. Remagnetization of the Jurassic limestones in the Zaduo area, Eastern Qiangtang Terrane (Tibetan Plateau, China): Implications for the India-Eurasia collision. Geophysical Journal International, 2022, 228(3): 2073-2091. 必应学术
    17. Fu, Q., Yan, M., Dekkers, M.J. et al. The Early Cretaceous Zaduo Granite, Eastern Qiangtang Terrane (China)—An Attempt to Constrain its Paleolatitude and Tectonic Implications. Frontiers in Earth Science, 2022, 10: 829593. 必应学术
    18. Yu, L., Yan, M., Domeier, M. et al. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 2022, 49(2): e2021GL096902. 必应学术
    19. Dong, Y., Sun, S., Santosh, M. et al. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Research, 2021, 100: 131-194. 必应学术
    20. Qiao, F., Zhang, Y.-C., Wang, Y. et al. An updated age of Permian strata in the Raggyorcaka and Qamdo areas, Tibet and their paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 582: 110660. 必应学术
    21. Guan, C., Yan, M., Zhang, W. et al. Paleomagnetic and Chronologic Data Bearing on the Permian/Triassic Boundary Position of Qamdo in the Eastern Qiantang Terrane: Implications for the Closure of the Paleo-Tethys. Geophysical Research Letters, 2021, 48(6): e2020GL092059. 必应学术
    22. Torsvik, T.H., Domeier, M., Cocks, L.R.M. Phanerozoic paleogeography and Pangea. Ancient Supercontinents and the Paleogeography of Earth, 2021. 必应学术
    23. Sun, J., Dong, Y. Stratigraphy and geochronology of Permo-Carboniferous strata in the Western North China Craton: Insights into the tectonic evolution of the southern Paleo-Asian Ocean. Gondwana Research, 2020, 88: 201-219. 必应学术
    24. Sun, J., Yang, L., Dong, Y. et al. Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology. Geological Journal, 2020, 55(12): 8068-8091. 必应学术
    25. Yang, X., Dong, Y. Multiple phases of deformation in the southern Helanshan tectonic Belt, northern China. Journal of Asian Earth Sciences, 2020, 201: 104497. 必应学术
    26. Sun, J., Dong, Y., Jiang, W. et al. Reconstructing the Olongbuluke Terrane (northern Tibet) in the end-Neoproterozoic to Ordovician Indian margin of Gondwana. Precambrian Research, 2020, 348: 105865. 必应学术
    27. Xu, W., Liu, F., Dong, Y. Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet. Earth-Science Reviews, 2020, 201: 103083. 必应学术

    其他类型引用(1)

  • 其他相关附件

计量
  • 文章访问数:  214
  • HTML全文浏览量:  62
  • PDF下载量:  6
  • 被引次数: 28
出版历程
  • 收稿日期:  2018-07-14
  • 修回日期:  2019-03-27
  • 网络出版日期:  2021-01-21

目录

    /

    返回文章
    返回