Biostratigraphy of a Paleocene–Eocene Foreland Basin boundary in southern Tibet
Biostratigraphy of a Paleocene–Eocene Foreland Basin boundary in southern Tibet
-
摘要: This study of the Paleocene–Eocene boundary within a foreland basin of southern Tibet, which was dominated by a carbonate ramp depositional environment, documents more complex environmental conditions than can be derived from studies of the deep oceanic environment. Extinction rates for larger foraminiferal species in the Zongpu-1 Section apply to up to 46% of the larger foraminiferal taxa. The extinction rate in southern Tibet is similar to rates elsewhere in the world, but it shows that the Paleocene fauna disappeared stepwise through the Late Paleocene, with Eocene taxa appearing abruptly above the boundary. A foraminifera turnover was identified between Members 3 and 4 of the Zongpu Formation—from the Miscellanea–Daviesina assemblage to an Orbitolites–Alveolina assemblage. The Paleocene and Eocene boundary is between the SBZ 4 and SBZ 5, where it is marked by the extinction of Miscellanea miscella and the first appearance of Alveolina ellipsodalis and a large number of Orbitolites. Chemostratigraphically, the δ13C values from both the Zongpu-1 and Zongpu-2 Sections show three negative excursions in the transitional strata, one in Late Paleocene, one at the boundary, and one in the early Eocene. The second negative excursion of δ13C, which is located at the P–E boundary, coincides with larger foraminifera overturn. These faunal changes and the observed δ13C negative excursions provide new evidence on environmental changes across the Paleocene–Eocene boundary in Tibet.Abstract: This study of the Paleocene–Eocene boundary within a foreland basin of southern Tibet, which was dominated by a carbonate ramp depositional environment, documents more complex environmental conditions than can be derived from studies of the deep oceanic environment. Extinction rates for larger foraminiferal species in the Zongpu-1 Section apply to up to 46% of the larger foraminiferal taxa. The extinction rate in southern Tibet is similar to rates elsewhere in the world, but it shows that the Paleocene fauna disappeared stepwise through the Late Paleocene, with Eocene taxa appearing abruptly above the boundary. A foraminifera turnover was identified between Members 3 and 4 of the Zongpu Formation—from the Miscellanea–Daviesina assemblage to an Orbitolites–Alveolina assemblage. The Paleocene and Eocene boundary is between the SBZ 4 and SBZ 5, where it is marked by the extinction of Miscellanea miscella and the first appearance of Alveolina ellipsodalis and a large number of Orbitolites. Chemostratigraphically, the δ13C values from both the Zongpu-1 and Zongpu-2 Sections show three negative excursions in the transitional strata, one in Late Paleocene, one at the boundary, and one in the early Eocene. The second negative excursion of δ13C, which is located at the P–E boundary, coincides with larger foraminifera overturn. These faunal changes and the observed δ13C negative excursions provide new evidence on environmental changes across the Paleocene–Eocene boundary in Tibet.