Volume 13 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Ye Peng, Mainak Mookherjee, Andreas Hermann, Geeth Manthilake, David Mainprice. Anomalous elasticity of talc at high pressures: Implications for subduction systems[J]. Geoscience Frontiers, 2022, 13(4): 101381. doi: 10.1016/j.gsf.2022.101381
Citation: Ye Peng, Mainak Mookherjee, Andreas Hermann, Geeth Manthilake, David Mainprice. Anomalous elasticity of talc at high pressures: Implications for subduction systems[J]. Geoscience Frontiers, 2022, 13(4): 101381. doi: 10.1016/j.gsf.2022.101381

Anomalous elasticity of talc at high pressures: Implications for subduction systems

doi: 10.1016/j.gsf.2022.101381

gion Auvergne, and the European Regional Development Fund (ClerVolc contribution number 530).

This work is supported by the US National Science Foundation grant EAR 1763215 and EAR 1753125. YP and MM acknowledge computing resources from XSEDE facilities (GEO170003) and the High-Performance Computing, Research Computing Center, Florida State University. AH acknowledges computing resources from the UK’s National Supercomputer Service through the UK Car-Parrinello Consortium (EPSRC Grant No. EP/P022561/1) and project ID d56 “Planetary Interiors”. GM acknowledges funding from the INSU-CNRS and the French Government Laboratory of Excellence initiative n°

ANR-10-LABX-0006, the Ré

  • Received Date: 2021-09-09
  • Accepted Date: 2022-03-11
  • Rev Recd Date: 2022-02-04
  • Publish Date: 2022-03-15
  • Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings. In this study, we explored the structure, equation of state, and elasticity of both triclinic and monoclinic talc under high pressures up to 18 GPa using first principles simulations based on density functional theory corrected for dispersive forces. Our results indicate that principal components of the full elastic constant tensor C11 and C22, shear components C66, and several off-diagonal components show anomalous pressure dependence. This non-monotonic pressure dependence of elastic constant components is likely related to the structural changes and is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-pressure polytype talc-II. The polytypic transition of talc occurs at pressures within its thermodynamic stability. However, the bulk and shear elastic moduli show no anomalous softening. Our study also shows that talc has low velocity, extremely high anisotropy, and anomalously high VP/VS ratio, thus making it a potential candidate mineral phase that could readily explain unusually high VP/VS ratio and large shear wave splitting delays as observed from seismological studies in many subduction systems.
  • loading
  • [1]
    Angel, R.J., 2000. Equations of state. Rev. Mineral. Geochem. 41, 35-59. 10.2138/rmg.2000.41.2
    Audet, P., Bostock, M.G., Christensen, N.I., Peacock, S.M., 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76-78. 10.1038/nature07650
    Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C., Guyot, F., 2004. High-pressure behaviour of serpentine minerals:a Raman spectroscopic study. Phys. Chem. Miner. 31, 269-277. 10.1007/s00269-004-0384-0
    Basu, A., Mookherjee, M., 2021. Intercalation of water in kaolinite (Al2Si2O5(OH)4) at subduction zone conditions:Insights from Raman Spectroscopy. ACS Earth Space Chem. 5, 834-848. 10.1021/acsearthspacechem.0c00349
    Babeyko, A.Y., Sobolev, S.V., Sinelnikov, E.D., Smirnov, Y.P., Derevschikova, N.A., 1994. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples. Surv. Geophys. 15, 545-573. 10.1007/BF00690174
    Bailey, E., Holloway, J.R., 2000. Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet. Sci. Lett. 183, 487-498. 10.1016/S0012-821X(00)00288-0
    Bebout, G.E., Barton, M.D., 2002. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab-mantle interface. Chem. Geol. 187, 79-106. 10.1016/S0009-2541(02)00019-0
    Bezacier, L., Reynard, B., Bass, J.D., Sanchez-Valle, C., Van de Moortèle, B., 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet. Sci. Lett. 289, 198-208. 10.1016/j.epsl.2009.11.009
    Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., Bass, J.D., 2013. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res.:Solid Earth 118, 527-535. 10.1002/jgrb.50076
    Birch, F., 1978. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res.:Solid Earth 83, 1257-1268. 10.1029/JB083iB03p01257
    Boschi, C., Früh-Green, G.L., Escartín, J., 2006. Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes:An overview. Ofioliti 31, 129-140
    Bose, K., Ganguly, J., 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet. Sci. Lett. 136, 109-121. 10.1016/0012-821X(95)00188-I
    Brudzinski, M.R., Thurber, C.H., Hacker, B.R., Engdahl, E.R., 2007. Global prevalence of double Benioff zones. Science 316, 1472-1474. 10.1126/science.1139204
    Chantel, J., Mookherjee, M., Frost, D.J., 2012. The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones. Earth Planet. Sci. Lett. 349, 116-125. 10.1016/j.epsl.2012.06.034
    Chheda, T.D., Mookherjee, M., Mainprice, D., dos Santos, A.M., Molaison, J.J., Chantel, J., Manthilake, G., Bassett, W.A., 2014. Structure and elasticity of phlogopite under compression:Geophysical implications. Phys. Earth Planet. Inter. 233, 1-12. 10.1016/j.pepi.2014.05.004
    Davies, G.F., 1974. Effective elastic moduli under hydrostatic stress-I. quasi-harmonic theory. J. Phys. Chem. Solids 35, 1513-1520. 10.1016/S0022-3697(74)80279-9
    Dera, P., Prewitt, C.T., Japel, S., Bish, D.L., Johnston, C.T., 2003. Pressure-controlled polytypism in hydrous layered materials. Am. Mineral. 88, 1428-1435. 10.2138/am-2003-1006
    Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., 2004. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401. 10.1103/PhysRevLett.92.246401
    Dorbath, C., Gerbault, M., Carlier, G., Guiraud, M., 2008. Double seismic zone of the Nazca plate in northern Chile:High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem. Geophys. Geosyst. 9, Q07006. 10.1029/2008GC002020
    Dougherty, S.L., Clayton, R.W., Helmberger, D.V., 2012. Seismic structure in central Mexico:Implications for fragmentation of the subducted Cocos plate. J. Geophys. Res.:Solid Earth 117, B09316. 10.1029/2012JB009528
    Escartín, J., Andreani, M., Hirth, G., Evans, B., 2008. Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet. Sci. Lett. 268, 463-475. 10.1016/j.epsl.2008.02.004
    Evans, B.W., Johannes, W., Oterdoom, W.H., Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz. Mineral. Petrogr. Mitt. 56, 79-93
    Faccenda, M., Burlini, L., Gerya, T.V., Mainprice, D., 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097-1100. 10.1038/nature07376
    Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H.P., Nénert, G., Rothkirch, A., Kahlenberg, V., Pavese, A., 2013. On the crystal structure and compressional behavior of talc:a mineral of interest in petrology and material science. Phys. Chem. Miner. 40, 145-156. 10.1007/s00269-012-0554-4
    Gleason, A.E., Parry, S.A., Pawley, A.R., Jeanloz, R., Clark, S.M., 2008. Pressure-temperature studies of talc plus water using X-ray diffraction. Am. Mineral. 93, 1043-1050. 10.2138/am.2008.2742
    Gruner, J.W., 1934. The crystal structures of talc and pyrophyllite. Z. Kristallogr.-Cryst. Mater. 88, 412-419. 10.1524/zkri.1934.88.1.412
    Hirschmann, M.M., 2006. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629-653. https://doi.org/10.1146/annurev.earth.34.031405.125211
    Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. 136, B864. 10.1103/PhysRev.136.B864
    Johnston, C.T., Wang, S.L., Bish, D.L., Dera, P., Agnew, S.F., Kenney III, J.W., 2002. Novel pressure-induced phase transformations in hydrous layered materials. Geophys. Res. Lett. 29, 17-1-17-4. http://dx.doi.org/10.1029/2002GL015402.
    Karato, S.I., 2008. Deformation of Earth Materials:An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge, UK
    Katayama, I., Hirauchi, K.I., Michibayashi, K., Ando, J.I., 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461, 1114-1117. 10.1038/nature08513
    Katsura, T., Tange, Y., 2019. A simple derivation of the Birch-Murnaghan Equations of State (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals 9, 745. 10.3390/min9120745
    Kawasaki, I., 2004. Silent earthquakes occurring in a stable-unstable transition zone and implications for earthquake prediction. Earth Planets Space 56, 813-821. 10.1186/BF03353088
    Kim, Y., Clayton, R.W., Jackson, J.M., 2010. Geometry and seismic properties of the subducting Cocos plate in central Mexico. J. Geophys. Res.:Solid Earth 115, B06310. 10.1029/2009JB006942
    Kim, Y., Clayton, R.W., Asimow, P.D., Jackson, J.M., 2013. Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth Planet. Sci. Lett. 384, 81-87. 10.1016/j.epsl.2013.10.006
    Klimeš, J., Bowler, D.R., Michaelides, A., 2009. Chemical accuracy for the van der Waals density functional. J. Phys.:Condens. Matter 22, 022201. 10.1088/0953-8984/22/2/022201
    Klimeš, J., Bowler, D.R., Michaelides, A., 2011. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131. 10.1103/PhysRevB.83.195131
    Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133. 10.1103/PhysRev.140.A1133
    Kresse, G., Furthmüller, J., 1996a. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50. 10.1016/0927-0256(96)00008-0
    Kresse, G., Furthmüller, J., 1996b. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169. 10.1103/PhysRevB.54.11169
    Kresse, G., Hafner, J., 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558. 10.1103/PhysRevB.47.558
    Kresse, G., Joubert, D., 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758. 10.1103/PhysRevB.59.1758
    Lee, J., Jung, H., Klemd, R., Tarling, M.S., Konopelko, D., 2020. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 537, 116178. 10.1016/j.epsl.2020.116178
    Lee, J., Mookherjee, M., Kim, T., Jung, H., Klemd, R., 2021. Seismic anisotropy in subduction zones:Evaluating the role of chloritoid. Front. Earth Sci., 9, 644958. 10.3389/feart.2021.64495
    Long, M.D., Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy:A global view. Science 319, 315-318. 10.1126/science.1150809
    Long, M.D., van der Hilst, R.D., 2006. Shear wave splitting from local events beneath the Ryukyu arc:Trench-parallel anisotropy in the mantle wedge. Phys. Earth Planet. Inter. 155, 300-312. 10.1016/j.pepi.2006.01.003
    Mainprice, D., 1990. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci. 16, 385-393. 10.1016/0098-3004(90)90072-2
    Mainprice, D., Le Page, Y., Rodgers, J., Jouanna, P., 2008. Ab initio elastic properties of talc from 0 to 12 GPa:Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth Planet. Sci. Lett. 274, 327-338. 10.1016/j.epsl.2008.07.047
    Manea, V., Gurnis, M., 2007. Subduction zone evolution and low viscosity wedges and channels. Earth Planet. Sci. Lett. 264, 22-45. 10.1016/j.epsl.2007.08.030
    Manea, V., Manea, M., 2011. Flat-slab thermal structure and evolution beneath central Mexico. Pure Appl. Geophys. 168, 1475-1487. 10.1007/s00024-010-0207-9
    Manthilake, G., Chantel, J., Guignot, N., King, A., 2021. The anomalous seismic behavior of aqueous fluids released during dehydration of chlorite in subduction zones. Minerals 11, 70. 10.3390/min11010070
    Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862-867. 10.1038/ngeo1634
    Meade, C., Jeanloz, R., 1990. Static compression of Ca(OH)2 at room temperature:observations of amorphization and equation of state measurements to 10.7 GPa. Geophys. Res. Lett. 17, 1157-1160. 10.1029/GL017i008p01157
    Monkhorst, H.J., Pack, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188. 10.1103/PhysRevB.13.5188
    Mookherjee, M., Capitani, G.C., 2011. Trench parallel anisotropy and large delay times:Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 38, L09315. 10.1029/2011GL047160
    Mookherjee, M., Mainprice, D., 2014. Unusually large shear wave anisotropy for chlorite in subduction zone settings. Geophys. Res. Lett. 41, 1506-1513. 10.1002/2014GL059334
    Mookherjee, M., Stixrude, L., 2009. Structure and elasticity of serpentine at high-pressure. Earth Planet. Sci. Lett. 279, 11-19. 10.1016/j.epsl.2008.12.018
    Mookherjee, M., Tsuchiya, J., Hariharan, A., 2016. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures. Phys. Earth Planet. Inter. 251, 24-35. 10.1016/j.pepi.2015.11.006
    Mookherjee, M., Panero, W.R., Wunder, B., Jahn, S., 2019. Anomalous elastic behavior of phase Egg, AlSiO3(OH), at high pressures. Am. Mineral. 104, 130-139
    Mookherjee, M., Speziale, S., Marquardt, H., Jahn, S., Wunder, B., Koch-müller, M., Liermann, H.-P., 2015. Equation of state and elasticity of 3.65 Å phase- implications for the X-discontinuity. Am. Mineral. 100, 2199-2208. 10.2138/am-2015-5312
    Mookherjee, M., Tsuchiya, J., 2015. Elasticity of superhydrous phase, B, Mg10Si3O14(OH)4. Phys. Earth Planet. Inter. 238, 42-50. 10.1016/j.pepi.2014.10.010
    Moore, D.E., Lockner, D.A., 2008. Talc friction in the temperature range 25-400℃:Relevance for fault-zone weakening. Tectonophysics 449, 120-132. 10.1016/j.tecto.2007.11.039
    Moore, D.E., Rymer, M.J., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795-797. 10.1038/nature06064
    Murnaghan, F.D., 1937. A theory of elasticity. Phys. Rev. 51, 593. 10.1103/PhysRev.51.593
    Nagaya, T., Okamoto, A., Oyanagi, R., Seto, Y., Miyake, A., Uno, M., Muto, J., Wallis, S.R., 2020. Crystallographic preferred orientation of talc determined by an improved EBSD procedure for sheet silicates:Implications for anisotropy at the slab-mantle interface due to Si-metasomatism. Am. Mineral. 105, 873-893. 10.2138/am-2020-7006
    Nestola, F., Angel, R.J., Zhao, J., Garrido, C.J., Sanchez-Vizcano, V.L., Capitani, G., Mellini, M., 2010. Antigorite equation of state and anomalous softening at 6 GPa:an in situ single-crystal X-ray diffraction study. Contrib. Mineral. Petrol. 160, 33-43. 10.1007/s00410-009-0463-9
    Nye, J.F., 1985. Physical Properties of Crystals:Their Representation by Tensors and Matrices. Oxford University Press, Oxford, UK
    Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., Kondo, T., 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143, 255-269. 10.1016/j.pepi.2003.09.015
    Pawley, A.R., Wood, B.J., 1995. The high-pressure stability of talc and 10 Å phase:potential storage sites for H2O in subduction zones. Am. Mineral. 80, 998-1003. 10.2138/am-1995-9-1015
    Pawley, A.R., Clark, S.M., Chinnery, N.J., 2002. Equation of state measurements of chlorite, pyrophyllite, and talc. Am. Mineral. 87, 1172-1182. 10.2138/am-2002-8-916
    Pawley, A.R., Redfern, S.A., Wood, B.J., 1995. Thermal expansivities and compressibilities of hydrous phases in the system MgO-SiO2-H2O:talc, phase A and 10-Å phase. Contrib. Mineral. Petrol. 122, 301-307. 10.1007/s004100050129
    Peacock, S.M., Hyndman, R.D., 1999. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys. Res. Lett. 26, 2517-2520. 10.1029/1999GL900558
    Peng, Y., Mookherjee, M., 2020. Thermoelasticity of tremolite amphibole:Geophysical implications. Am. Mineral. 105, 904-916. 10.2138/am-2020-7189
    Peng, Y., Mookherjee, M., Hermann, A., Bajgain, S., Liu, S., Wunder, B., 2017. Elasticity of phase-Pi (Al3Si2O7(OH)3)-A hydrous aluminosilicate phase. Phys. Earth Planet. Inter. 269, 91-97. 10.1016/j.pepi.2017.05.016
    Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865. 10.1103/PhysRevLett.77.3865
    Perdikatsis, B., Burzlaff, H., 1981. Strukturverfeinerung am talk Mg3[(OH)2Si4O10]. Z. Kristallogr.-Cryst. Mater. 156, 177-186. 10.1524/zkri.1981.156.3-4.177
    Pérez-Campos, X., Kim, Y., Husker, A., Davis, P.M., Clayton, R.W., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V., Gurnis, M., 2008. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. Geophys. Res. Lett. 35, L18303. 10.1029/2008GL035127
    Ranero, C.R., Morgan, J.P., McIntosh, K., Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367-373. 10.1038/nature01961
    Rashchenko, S.V., Likhacheva, A.Y., Goryainov, S.V., Krylov, A.S., Litasov, K.D., 2016. In situ spectroscopic study of water intercalation into talc:New features of 10 Å phase formation. Am. Mineral. 101, 431-436. 10.2138/am-2016-5356
    Rayner, J.H., Brown, G., 1973. The crystal structure of talc. Clays Clay Miner. 21, 103-114. 10.1346/CCMN.1973.0210206
    Román-Pérez, G., Soler, J.M., 2009. Efficient implementation of a van der Waals density functional:application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102. 10.1103/PhysRevLett.103.096102
    Rondenay, S., Abers, G.A., Van Keken, P.E., 2008. Seismic imaging of subduction zone metamorphism. Geology 36, 275-278. 10.1130/G24112A.1
    Schroeder, T., John, B.E., 2004. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30 N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 5, Q11007. 10.1029/2004GC000728
    Saha, S., Peng, Y., Dasgupta, R., Mookherjee, M., Fischer, K.M., 2021. Assessing the presence of volatile-bearing mineral phases in cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth Planet. Sci. Lett. 553, 116602. 10.1016/j.epsl.2020.116602
    Scott, H.P., Liu, Z., Hemley, R.J., Williams, Q., 2007. High-pressure infrared spectra of talc and lawsonite. Am. Mineral. 92, 1814-1820. 10.2138/am.2007.2430
    Song, T., Kim, Y., 2012. Anisotropic uppermost mantle in young subducted slab underplating Central Mexico. Nat. Geosci. 5, 55-59. 10.1038/ngeo1342
    Song, T., Helmberger, D.V., Brudzinski, M.R., Clayton, R.W., Davis, P., Pérez-Campos, X., Singh, S.K., 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324, 502-506. 10.1126/science.1167595
    Spandler, C., Hermann, J., Faure, K., Mavrogenes, J.A., Arculus, R.J., 2008. The importance of talc and chlorite "hybrid" rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Petrol. 155, 181-198. 10.1007/s00410-007-0236-2
    Stixrude, L., 2002. Talc under tension and compression:Spinodal instability, elasticity, and structure. J. Geophys. Res.:Solid Earth 107, 2327. 10.1029/2001JB001684
    Tsuchiya, J., 2013. A first-principles calculation of the elastic and vibrational anomalies of lizardite under pressure. Am. Mineral. 98, 2046-2052. 10.2138/am.2013.4369
    Tsuchiya, J., Tsuchiya, T., 2009. Elastic properties of δ-AlOOH under pressure:First principles investigation. Phys. Earth Planet. Inter. 174, 122-127. 10.1016/j.pepi.2009.01.008
    Tsuchiya, J., Tsuchiya, T., 2011. First-principles prediction of a high-pressure hydrous phase of AlOOH. Phys. Rev. B 83, 054115. 10.1103/PhysRevB.83.054115
    Tsuchiya, J., Tsuchiya, T., Tsuneyuki, S., 2005. First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am. Mineral. 90, 44-49. 10.2138/am.2005.1628
    Ulian, G., Valdrè, G., 2017. Effects of fluorine content on the elastic behavior of topaz[Al2SiO4(F,OH)2]. Am. Mineral. 102, 347-356. 10.2138/am-2017-5668
    Ulian, G., Valdrè, G., 2019. Equation of state and second-order elastic constants of portlandite Ca(OH)2 and brucite Mg(OH)2. Phys. Chem. Miner. 46, 101-117. 10.1007/s00269-018-0989-3
    Ulian, G., Tosoni, S., Valdrè, G., 2014. The compressional behaviour and the mechanical properties of talc[Mg3Si4O10(OH)2]:a density functional theory investigation. Phys. Chem. Miner. 41, 639-650. 10.1007/s00269-014-0677-x
    Weaver, J.S., 1976. Application of finite strain theory to non-cubic crystals. J. Phys. Chem. Solids 37, 711-718. 10.1016/0022-3697(76)90009-3
    Weck, P.F., Kim, E., Jove-Colon, C.F., 2015. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay:beyond standard density functional theory. Dalton Trans. 44, 12550-12560. 10.1039/C5DT00590F
    Welch, M.D., Kleppe, A.K., Jeohcoat, A.P., 2004. Novel high-pressure behavior in chlorite:A synchrotron XRD study of clinochlore to 27 GPa. Am. Mineral. 89, 1337-1340. 10.2138/am-2004-8-923
    Welch, M.D., Crichton, W.A., 2010. Pressure-induced transformations in kaolinite. Am. Mineral. 95, 651-654. 10.2138/am.2010.3408
    Wenk, H.R., Bulakh, A., 2016. Minerals:Their Constitution and Origin. Cambridge University Press, Cambridge, UK
    Wentzcovitch, R.M., Stixrude, L., 1997. Crystal chemistry of forsterite:A first-principles study. Am. Mineral. 82, 663-671. 10.2138/am-1997-7-802
    Wibberley, C., 2007. Talc at fault. Nature 448, 756-757. 10.1038/448756a
    Yang, D., Wang, W., Wu, W., 2017. Elasticity of superhydrous phase B at the mantle temperatures and pressures:Implications for 800 km discontinuity and water flow into the lower mantle, J. Geophys. Res.:Solid Earth 122, 5026-5037. 10.1002/2017JB014319
    Yang, W., Li, Z.M., Shi, W., Xie, B.H., Yang, M.B., 2004. Review on auxetic materials. J. Mater. Sci. 39, 3269-3279. 10.1023/B:JMSC.0000026928.93231.e0
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint