Volume 13 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Ye Peng, Mainak Mookherjee, Andreas Hermann, Geeth Manthilake, David Mainprice. Anomalous elasticity of talc at high pressures: Implications for subduction systems[J]. Geoscience Frontiers, 2022, 13(4): 101381. doi: 10.1016/j.gsf.2022.101381
Citation: Ye Peng, Mainak Mookherjee, Andreas Hermann, Geeth Manthilake, David Mainprice. Anomalous elasticity of talc at high pressures: Implications for subduction systems[J]. Geoscience Frontiers, 2022, 13(4): 101381. doi: 10.1016/j.gsf.2022.101381

Anomalous elasticity of talc at high pressures: Implications for subduction systems

doi: 10.1016/j.gsf.2022.101381
Funds:

gion Auvergne, and the European Regional Development Fund (ClerVolc contribution number 530).

This work is supported by the US National Science Foundation grant EAR 1763215 and EAR 1753125. YP and MM acknowledge computing resources from XSEDE facilities (GEO170003) and the High-Performance Computing, Research Computing Center, Florida State University. AH acknowledges computing resources from the UK’s National Supercomputer Service through the UK Car-Parrinello Consortium (EPSRC Grant No. EP/P022561/1) and project ID d56 “Planetary Interiors”. GM acknowledges funding from the INSU-CNRS and the French Government Laboratory of Excellence initiative n°

ANR-10-LABX-0006, the Ré

  • Received Date: 2021-09-09
  • Accepted Date: 2022-03-11
  • Rev Recd Date: 2022-02-04
  • Publish Date: 2022-03-15
  • Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings. In this study, we explored the structure, equation of state, and elasticity of both triclinic and monoclinic talc under high pressures up to 18 GPa using first principles simulations based on density functional theory corrected for dispersive forces. Our results indicate that principal components of the full elastic constant tensor C11 and C22, shear components C66, and several off-diagonal components show anomalous pressure dependence. This non-monotonic pressure dependence of elastic constant components is likely related to the structural changes and is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-pressure polytype talc-II. The polytypic transition of talc occurs at pressures within its thermodynamic stability. However, the bulk and shear elastic moduli show no anomalous softening. Our study also shows that talc has low velocity, extremely high anisotropy, and anomalously high VP/VS ratio, thus making it a potential candidate mineral phase that could readily explain unusually high VP/VS ratio and large shear wave splitting delays as observed from seismological studies in many subduction systems.
  • loading
  • [1]
    Angel, R.J., 2000. Equations of state. Rev. Mineral. Geochem. 41, 35-59. 10.2138/rmg.2000.41.2
    [2]
    Audet, P., Bostock, M.G., Christensen, N.I., Peacock, S.M., 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76-78. 10.1038/nature07650
    [3]
    Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C., Guyot, F., 2004. High-pressure behaviour of serpentine minerals:a Raman spectroscopic study. Phys. Chem. Miner. 31, 269-277. 10.1007/s00269-004-0384-0
    [4]
    Basu, A., Mookherjee, M., 2021. Intercalation of water in kaolinite (Al2Si2O5(OH)4) at subduction zone conditions:Insights from Raman Spectroscopy. ACS Earth Space Chem. 5, 834-848. 10.1021/acsearthspacechem.0c00349
    [5]
    Babeyko, A.Y., Sobolev, S.V., Sinelnikov, E.D., Smirnov, Y.P., Derevschikova, N.A., 1994. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples. Surv. Geophys. 15, 545-573. 10.1007/BF00690174
    [6]
    Bailey, E., Holloway, J.R., 2000. Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet. Sci. Lett. 183, 487-498. 10.1016/S0012-821X(00)00288-0
    [7]
    Bebout, G.E., Barton, M.D., 2002. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab-mantle interface. Chem. Geol. 187, 79-106. 10.1016/S0009-2541(02)00019-0
    [8]
    Bezacier, L., Reynard, B., Bass, J.D., Sanchez-Valle, C., Van de Moortèle, B., 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet. Sci. Lett. 289, 198-208. 10.1016/j.epsl.2009.11.009
    [9]
    Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., Bass, J.D., 2013. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res.:Solid Earth 118, 527-535. 10.1002/jgrb.50076
    [10]
    Birch, F., 1978. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res.:Solid Earth 83, 1257-1268. 10.1029/JB083iB03p01257
    [11]
    Boschi, C., Früh-Green, G.L., Escartín, J., 2006. Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes:An overview. Ofioliti 31, 129-140
    [12]
    Bose, K., Ganguly, J., 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet. Sci. Lett. 136, 109-121. 10.1016/0012-821X(95)00188-I
    [13]
    Brudzinski, M.R., Thurber, C.H., Hacker, B.R., Engdahl, E.R., 2007. Global prevalence of double Benioff zones. Science 316, 1472-1474. 10.1126/science.1139204
    [14]
    Chantel, J., Mookherjee, M., Frost, D.J., 2012. The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones. Earth Planet. Sci. Lett. 349, 116-125. 10.1016/j.epsl.2012.06.034
    [15]
    Chheda, T.D., Mookherjee, M., Mainprice, D., dos Santos, A.M., Molaison, J.J., Chantel, J., Manthilake, G., Bassett, W.A., 2014. Structure and elasticity of phlogopite under compression:Geophysical implications. Phys. Earth Planet. Inter. 233, 1-12. 10.1016/j.pepi.2014.05.004
    [16]
    Davies, G.F., 1974. Effective elastic moduli under hydrostatic stress-I. quasi-harmonic theory. J. Phys. Chem. Solids 35, 1513-1520. 10.1016/S0022-3697(74)80279-9
    [17]
    Dera, P., Prewitt, C.T., Japel, S., Bish, D.L., Johnston, C.T., 2003. Pressure-controlled polytypism in hydrous layered materials. Am. Mineral. 88, 1428-1435. 10.2138/am-2003-1006
    [18]
    Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., 2004. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401. 10.1103/PhysRevLett.92.246401
    [19]
    Dorbath, C., Gerbault, M., Carlier, G., Guiraud, M., 2008. Double seismic zone of the Nazca plate in northern Chile:High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem. Geophys. Geosyst. 9, Q07006. 10.1029/2008GC002020
    [20]
    Dougherty, S.L., Clayton, R.W., Helmberger, D.V., 2012. Seismic structure in central Mexico:Implications for fragmentation of the subducted Cocos plate. J. Geophys. Res.:Solid Earth 117, B09316. 10.1029/2012JB009528
    [21]
    Escartín, J., Andreani, M., Hirth, G., Evans, B., 2008. Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet. Sci. Lett. 268, 463-475. 10.1016/j.epsl.2008.02.004
    [22]
    Evans, B.W., Johannes, W., Oterdoom, W.H., Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentine multisystem. Schweiz. Mineral. Petrogr. Mitt. 56, 79-93
    [23]
    Faccenda, M., Burlini, L., Gerya, T.V., Mainprice, D., 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097-1100. 10.1038/nature07376
    [24]
    Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H.P., Nénert, G., Rothkirch, A., Kahlenberg, V., Pavese, A., 2013. On the crystal structure and compressional behavior of talc:a mineral of interest in petrology and material science. Phys. Chem. Miner. 40, 145-156. 10.1007/s00269-012-0554-4
    [25]
    Gleason, A.E., Parry, S.A., Pawley, A.R., Jeanloz, R., Clark, S.M., 2008. Pressure-temperature studies of talc plus water using X-ray diffraction. Am. Mineral. 93, 1043-1050. 10.2138/am.2008.2742
    [26]
    Gruner, J.W., 1934. The crystal structures of talc and pyrophyllite. Z. Kristallogr.-Cryst. Mater. 88, 412-419. 10.1524/zkri.1934.88.1.412
    [27]
    Hirschmann, M.M., 2006. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629-653. https://doi.org/10.1146/annurev.earth.34.031405.125211
    [28]
    Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. 136, B864. 10.1103/PhysRev.136.B864
    [29]
    Johnston, C.T., Wang, S.L., Bish, D.L., Dera, P., Agnew, S.F., Kenney III, J.W., 2002. Novel pressure-induced phase transformations in hydrous layered materials. Geophys. Res. Lett. 29, 17-1-17-4. http://dx.doi.org/10.1029/2002GL015402.
    [30]
    Karato, S.I., 2008. Deformation of Earth Materials:An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge, UK
    [31]
    Katayama, I., Hirauchi, K.I., Michibayashi, K., Ando, J.I., 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461, 1114-1117. 10.1038/nature08513
    [32]
    Katsura, T., Tange, Y., 2019. A simple derivation of the Birch-Murnaghan Equations of State (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals 9, 745. 10.3390/min9120745
    [33]
    Kawasaki, I., 2004. Silent earthquakes occurring in a stable-unstable transition zone and implications for earthquake prediction. Earth Planets Space 56, 813-821. 10.1186/BF03353088
    [34]
    Kim, Y., Clayton, R.W., Jackson, J.M., 2010. Geometry and seismic properties of the subducting Cocos plate in central Mexico. J. Geophys. Res.:Solid Earth 115, B06310. 10.1029/2009JB006942
    [35]
    Kim, Y., Clayton, R.W., Asimow, P.D., Jackson, J.M., 2013. Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth Planet. Sci. Lett. 384, 81-87. 10.1016/j.epsl.2013.10.006
    [36]
    Klimeš, J., Bowler, D.R., Michaelides, A., 2009. Chemical accuracy for the van der Waals density functional. J. Phys.:Condens. Matter 22, 022201. 10.1088/0953-8984/22/2/022201
    [37]
    Klimeš, J., Bowler, D.R., Michaelides, A., 2011. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131. 10.1103/PhysRevB.83.195131
    [38]
    Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133. 10.1103/PhysRev.140.A1133
    [39]
    Kresse, G., Furthmüller, J., 1996a. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50. 10.1016/0927-0256(96)00008-0
    [40]
    Kresse, G., Furthmüller, J., 1996b. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169. 10.1103/PhysRevB.54.11169
    [41]
    Kresse, G., Hafner, J., 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558. 10.1103/PhysRevB.47.558
    [42]
    Kresse, G., Joubert, D., 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758. 10.1103/PhysRevB.59.1758
    [43]
    Lee, J., Jung, H., Klemd, R., Tarling, M.S., Konopelko, D., 2020. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 537, 116178. 10.1016/j.epsl.2020.116178
    [44]
    Lee, J., Mookherjee, M., Kim, T., Jung, H., Klemd, R., 2021. Seismic anisotropy in subduction zones:Evaluating the role of chloritoid. Front. Earth Sci., 9, 644958. 10.3389/feart.2021.64495
    [45]
    Long, M.D., Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy:A global view. Science 319, 315-318. 10.1126/science.1150809
    [46]
    Long, M.D., van der Hilst, R.D., 2006. Shear wave splitting from local events beneath the Ryukyu arc:Trench-parallel anisotropy in the mantle wedge. Phys. Earth Planet. Inter. 155, 300-312. 10.1016/j.pepi.2006.01.003
    [47]
    Mainprice, D., 1990. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci. 16, 385-393. 10.1016/0098-3004(90)90072-2
    [48]
    Mainprice, D., Le Page, Y., Rodgers, J., Jouanna, P., 2008. Ab initio elastic properties of talc from 0 to 12 GPa:Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure. Earth Planet. Sci. Lett. 274, 327-338. 10.1016/j.epsl.2008.07.047
    [49]
    Manea, V., Gurnis, M., 2007. Subduction zone evolution and low viscosity wedges and channels. Earth Planet. Sci. Lett. 264, 22-45. 10.1016/j.epsl.2007.08.030
    [50]
    Manea, V., Manea, M., 2011. Flat-slab thermal structure and evolution beneath central Mexico. Pure Appl. Geophys. 168, 1475-1487. 10.1007/s00024-010-0207-9
    [51]
    Manthilake, G., Chantel, J., Guignot, N., King, A., 2021. The anomalous seismic behavior of aqueous fluids released during dehydration of chlorite in subduction zones. Minerals 11, 70. 10.3390/min11010070
    [52]
    Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862-867. 10.1038/ngeo1634
    [53]
    Meade, C., Jeanloz, R., 1990. Static compression of Ca(OH)2 at room temperature:observations of amorphization and equation of state measurements to 10.7 GPa. Geophys. Res. Lett. 17, 1157-1160. 10.1029/GL017i008p01157
    [54]
    Monkhorst, H.J., Pack, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188. 10.1103/PhysRevB.13.5188
    [55]
    Mookherjee, M., Capitani, G.C., 2011. Trench parallel anisotropy and large delay times:Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 38, L09315. 10.1029/2011GL047160
    [56]
    Mookherjee, M., Mainprice, D., 2014. Unusually large shear wave anisotropy for chlorite in subduction zone settings. Geophys. Res. Lett. 41, 1506-1513. 10.1002/2014GL059334
    [57]
    Mookherjee, M., Stixrude, L., 2009. Structure and elasticity of serpentine at high-pressure. Earth Planet. Sci. Lett. 279, 11-19. 10.1016/j.epsl.2008.12.018
    [58]
    Mookherjee, M., Tsuchiya, J., Hariharan, A., 2016. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures. Phys. Earth Planet. Inter. 251, 24-35. 10.1016/j.pepi.2015.11.006
    [59]
    Mookherjee, M., Panero, W.R., Wunder, B., Jahn, S., 2019. Anomalous elastic behavior of phase Egg, AlSiO3(OH), at high pressures. Am. Mineral. 104, 130-139
    [60]
    Mookherjee, M., Speziale, S., Marquardt, H., Jahn, S., Wunder, B., Koch-müller, M., Liermann, H.-P., 2015. Equation of state and elasticity of 3.65 Å phase- implications for the X-discontinuity. Am. Mineral. 100, 2199-2208. 10.2138/am-2015-5312
    [61]
    Mookherjee, M., Tsuchiya, J., 2015. Elasticity of superhydrous phase, B, Mg10Si3O14(OH)4. Phys. Earth Planet. Inter. 238, 42-50. 10.1016/j.pepi.2014.10.010
    [62]
    Moore, D.E., Lockner, D.A., 2008. Talc friction in the temperature range 25-400℃:Relevance for fault-zone weakening. Tectonophysics 449, 120-132. 10.1016/j.tecto.2007.11.039
    [63]
    Moore, D.E., Rymer, M.J., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795-797. 10.1038/nature06064
    [64]
    Murnaghan, F.D., 1937. A theory of elasticity. Phys. Rev. 51, 593. 10.1103/PhysRev.51.593
    [65]
    Nagaya, T., Okamoto, A., Oyanagi, R., Seto, Y., Miyake, A., Uno, M., Muto, J., Wallis, S.R., 2020. Crystallographic preferred orientation of talc determined by an improved EBSD procedure for sheet silicates:Implications for anisotropy at the slab-mantle interface due to Si-metasomatism. Am. Mineral. 105, 873-893. 10.2138/am-2020-7006
    [66]
    Nestola, F., Angel, R.J., Zhao, J., Garrido, C.J., Sanchez-Vizcano, V.L., Capitani, G., Mellini, M., 2010. Antigorite equation of state and anomalous softening at 6 GPa:an in situ single-crystal X-ray diffraction study. Contrib. Mineral. Petrol. 160, 33-43. 10.1007/s00410-009-0463-9
    [67]
    Nye, J.F., 1985. Physical Properties of Crystals:Their Representation by Tensors and Matrices. Oxford University Press, Oxford, UK
    [68]
    Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., Kondo, T., 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143, 255-269. 10.1016/j.pepi.2003.09.015
    [69]
    Pawley, A.R., Wood, B.J., 1995. The high-pressure stability of talc and 10 Å phase:potential storage sites for H2O in subduction zones. Am. Mineral. 80, 998-1003. 10.2138/am-1995-9-1015
    [70]
    Pawley, A.R., Clark, S.M., Chinnery, N.J., 2002. Equation of state measurements of chlorite, pyrophyllite, and talc. Am. Mineral. 87, 1172-1182. 10.2138/am-2002-8-916
    [71]
    Pawley, A.R., Redfern, S.A., Wood, B.J., 1995. Thermal expansivities and compressibilities of hydrous phases in the system MgO-SiO2-H2O:talc, phase A and 10-Å phase. Contrib. Mineral. Petrol. 122, 301-307. 10.1007/s004100050129
    [72]
    Peacock, S.M., Hyndman, R.D., 1999. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys. Res. Lett. 26, 2517-2520. 10.1029/1999GL900558
    [73]
    Peng, Y., Mookherjee, M., 2020. Thermoelasticity of tremolite amphibole:Geophysical implications. Am. Mineral. 105, 904-916. 10.2138/am-2020-7189
    [74]
    Peng, Y., Mookherjee, M., Hermann, A., Bajgain, S., Liu, S., Wunder, B., 2017. Elasticity of phase-Pi (Al3Si2O7(OH)3)-A hydrous aluminosilicate phase. Phys. Earth Planet. Inter. 269, 91-97. 10.1016/j.pepi.2017.05.016
    [75]
    Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865. 10.1103/PhysRevLett.77.3865
    [76]
    Perdikatsis, B., Burzlaff, H., 1981. Strukturverfeinerung am talk Mg3[(OH)2Si4O10]. Z. Kristallogr.-Cryst. Mater. 156, 177-186. 10.1524/zkri.1981.156.3-4.177
    [77]
    Pérez-Campos, X., Kim, Y., Husker, A., Davis, P.M., Clayton, R.W., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V., Gurnis, M., 2008. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. Geophys. Res. Lett. 35, L18303. 10.1029/2008GL035127
    [78]
    Ranero, C.R., Morgan, J.P., McIntosh, K., Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367-373. 10.1038/nature01961
    [79]
    Rashchenko, S.V., Likhacheva, A.Y., Goryainov, S.V., Krylov, A.S., Litasov, K.D., 2016. In situ spectroscopic study of water intercalation into talc:New features of 10 Å phase formation. Am. Mineral. 101, 431-436. 10.2138/am-2016-5356
    [80]
    Rayner, J.H., Brown, G., 1973. The crystal structure of talc. Clays Clay Miner. 21, 103-114. 10.1346/CCMN.1973.0210206
    [81]
    Román-Pérez, G., Soler, J.M., 2009. Efficient implementation of a van der Waals density functional:application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102. 10.1103/PhysRevLett.103.096102
    [82]
    Rondenay, S., Abers, G.A., Van Keken, P.E., 2008. Seismic imaging of subduction zone metamorphism. Geology 36, 275-278. 10.1130/G24112A.1
    [83]
    Schroeder, T., John, B.E., 2004. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30 N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 5, Q11007. 10.1029/2004GC000728
    [84]
    Saha, S., Peng, Y., Dasgupta, R., Mookherjee, M., Fischer, K.M., 2021. Assessing the presence of volatile-bearing mineral phases in cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth Planet. Sci. Lett. 553, 116602. 10.1016/j.epsl.2020.116602
    [85]
    Scott, H.P., Liu, Z., Hemley, R.J., Williams, Q., 2007. High-pressure infrared spectra of talc and lawsonite. Am. Mineral. 92, 1814-1820. 10.2138/am.2007.2430
    [86]
    Song, T., Kim, Y., 2012. Anisotropic uppermost mantle in young subducted slab underplating Central Mexico. Nat. Geosci. 5, 55-59. 10.1038/ngeo1342
    [87]
    Song, T., Helmberger, D.V., Brudzinski, M.R., Clayton, R.W., Davis, P., Pérez-Campos, X., Singh, S.K., 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324, 502-506. 10.1126/science.1167595
    [88]
    Spandler, C., Hermann, J., Faure, K., Mavrogenes, J.A., Arculus, R.J., 2008. The importance of talc and chlorite "hybrid" rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Petrol. 155, 181-198. 10.1007/s00410-007-0236-2
    [89]
    Stixrude, L., 2002. Talc under tension and compression:Spinodal instability, elasticity, and structure. J. Geophys. Res.:Solid Earth 107, 2327. 10.1029/2001JB001684
    [90]
    Tsuchiya, J., 2013. A first-principles calculation of the elastic and vibrational anomalies of lizardite under pressure. Am. Mineral. 98, 2046-2052. 10.2138/am.2013.4369
    [91]
    Tsuchiya, J., Tsuchiya, T., 2009. Elastic properties of δ-AlOOH under pressure:First principles investigation. Phys. Earth Planet. Inter. 174, 122-127. 10.1016/j.pepi.2009.01.008
    [92]
    Tsuchiya, J., Tsuchiya, T., 2011. First-principles prediction of a high-pressure hydrous phase of AlOOH. Phys. Rev. B 83, 054115. 10.1103/PhysRevB.83.054115
    [93]
    Tsuchiya, J., Tsuchiya, T., Tsuneyuki, S., 2005. First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am. Mineral. 90, 44-49. 10.2138/am.2005.1628
    [94]
    Ulian, G., Valdrè, G., 2017. Effects of fluorine content on the elastic behavior of topaz[Al2SiO4(F,OH)2]. Am. Mineral. 102, 347-356. 10.2138/am-2017-5668
    [95]
    Ulian, G., Valdrè, G., 2019. Equation of state and second-order elastic constants of portlandite Ca(OH)2 and brucite Mg(OH)2. Phys. Chem. Miner. 46, 101-117. 10.1007/s00269-018-0989-3
    [96]
    Ulian, G., Tosoni, S., Valdrè, G., 2014. The compressional behaviour and the mechanical properties of talc[Mg3Si4O10(OH)2]:a density functional theory investigation. Phys. Chem. Miner. 41, 639-650. 10.1007/s00269-014-0677-x
    [97]
    Weaver, J.S., 1976. Application of finite strain theory to non-cubic crystals. J. Phys. Chem. Solids 37, 711-718. 10.1016/0022-3697(76)90009-3
    [98]
    Weck, P.F., Kim, E., Jove-Colon, C.F., 2015. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay:beyond standard density functional theory. Dalton Trans. 44, 12550-12560. 10.1039/C5DT00590F
    [99]
    Welch, M.D., Kleppe, A.K., Jeohcoat, A.P., 2004. Novel high-pressure behavior in chlorite:A synchrotron XRD study of clinochlore to 27 GPa. Am. Mineral. 89, 1337-1340. 10.2138/am-2004-8-923
    [100]
    Welch, M.D., Crichton, W.A., 2010. Pressure-induced transformations in kaolinite. Am. Mineral. 95, 651-654. 10.2138/am.2010.3408
    [101]
    Wenk, H.R., Bulakh, A., 2016. Minerals:Their Constitution and Origin. Cambridge University Press, Cambridge, UK
    [102]
    Wentzcovitch, R.M., Stixrude, L., 1997. Crystal chemistry of forsterite:A first-principles study. Am. Mineral. 82, 663-671. 10.2138/am-1997-7-802
    [103]
    Wibberley, C., 2007. Talc at fault. Nature 448, 756-757. 10.1038/448756a
    [104]
    Yang, D., Wang, W., Wu, W., 2017. Elasticity of superhydrous phase B at the mantle temperatures and pressures:Implications for 800 km discontinuity and water flow into the lower mantle, J. Geophys. Res.:Solid Earth 122, 5026-5037. 10.1002/2017JB014319
    [105]
    Yang, W., Li, Z.M., Shi, W., Xie, B.H., Yang, M.B., 2004. Review on auxetic materials. J. Mater. Sci. 39, 3269-3279. 10.1023/B:JMSC.0000026928.93231.e0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return