Volume 13 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Stephen F. Foley, Isra S. Ezad, Sieger R. van der Laan, Maik Pertermann. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts[J]. Geoscience Frontiers, 2022, 13(4): 101380. doi: 10.1016/j.gsf.2022.101380
Citation: Stephen F. Foley, Isra S. Ezad, Sieger R. van der Laan, Maik Pertermann. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts[J]. Geoscience Frontiers, 2022, 13(4): 101380. doi: 10.1016/j.gsf.2022.101380

Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts

doi: 10.1016/j.gsf.2022.101380
Funds:

This research was funded by grants from the Deutsche Forschungsgemeinschaft (Fo 181/3) and the Australian Research Council (FL180100134). We are grateful for the technical, analytical input or comments from Simon Jackson, Ingo Horn, Chunfei Chen, Chutian Shu and Joshua Shea.

  • Received Date: 2021-10-29
  • Accepted Date: 2022-03-11
  • Rev Recd Date: 2022-01-24
  • Publish Date: 2022-03-14
  • Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.
    Results show that KR melts rapidly and completely within 50 ℃ of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.
    Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.
  • loading
  • [1]
    Afonso, J.C., Ben-Mansour, W., O'Reilly, S.Y., Griffin, W.L., Salajeghegh, F., Foley, S., Begg, G., Selway, K., Macdonald, A., Januszczak, N., Fomin, I., Nyblade, A.A., Yang, Y., 2021. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nat. Geosci. in press
    [2]
    Akal, C., 2003. Mineralogy and geochemistry of melilite leucitites, Balcikhisar, Afyon, (Turkey). Turk. J. Earth Sci. 12, 215-239
    [3]
    Akal, C., 2008. K-richterite-olivine-phlogopite-diopside-sanidine lamproites from the Afyon Volcanic Province, Turkey. Geol. Mag. 145, 570-585
    [4]
    Allen, M.B., Kheirkhah, M., Neill, I., Emami, M. H., Mcleod, C. L. 2013. Generation of arc and within-plate chemical signatures in collision zone magmatism:Quaternary lavas from Kurdistan Province, Iran. J. Petrol. 54 (5), 887-911
    [5]
    Allsopp, H.L., Smith, C.B., 1995. The emplacement age and geochemical character of the Venetia kimberlite. S. Afr. J. Geol. 98, 239-244
    [6]
    Aoki, K, 1974. Phlogopites and potassic richterites from mica nodules in South African kimberlites. Contributions to Mineralogy and Petrology 48, 1-7
    [7]
    Artemieva, I.M., 2009. The continental lithosphere:reconciling thermal, seismic, and petrologic data. Lithos 109, 23-46
    [8]
    Aulbach, S., Lin, A.-B., Weiss, Y., Yaxley, G.M., 2020. Wehrlites from continental mantle monitor the passage and degassing of carbonated melts. Geochem. Perspect. Lett. 30-34
    [9]
    Bali, E., Hidas, K., Guðfinnsson, G.H., Kovács, Z., Török, K., Román-Alpiste, M.J., 2018. Zircon and apatite-bearing pyroxene hornblendite mantle xenolith from Hungary, Carpathian-Pannonian region. Lithos 316-317, 19-32
    [10]
    Barker, D.S., Nixon, P.H., 1989. High-Ca, low-alkali carbonatite volcanism at Fort Portal, Uganda. Contrib. Mineral. Petrol. 103, 166-177
    [11]
    Barton, M., van Bergen, M.J., 1981. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contrib. Mineral. Petrol. 77, 101-114
    [12]
    Becerra-Torres, E., Melekhova, E., Blundy, J.D., Brooker, R.A., 2020. Experimental evidence for decompression melting of metasomatized mantle beneath Colima Graben, Mexico. Contrib. Mineral. Petrol. 175 (11), 101
    [13]
    Becker, M., Le Roux, A.P., 2006. Geochemistry of South African on- and off-craton Group I and Group II kimberlites:petrogenesis and source region evolution. J. Petrol. 47, 673-703
    [14]
    Becker, M., le Roex, A.P., Class, C., 2007. Geochemistry and petrogenesis of South African transitional kimberlites located on and off the Kaapvaal Craton. S. Afr. J. Geol. 110 (4), 631-646
    [15]
    Borghini, G., Fumagallli, P., 2018. Subsolidus phase relations in a mantle pyroxenite:an experimental study from 0.7 to 1.5 GPa. Eur. J. Mineral. 30, 333-348
    [16]
    Borghini, G., Fumagalli, P., Rampone, E., 2017. Partial melting of secondary pyroxenite at 1 and 1.5 GPa, and its role in upwelling heterogeneous mantle. Contrib. Mineral. Petrol. 172 (8), 70
    [17]
    Borghini, G., Rampone, E., Zanetti, A., Class, C., Fumagalli, P., Godard, M., 2020. Ligurian pyroxenite-peridotite sequences (Italy) and the role of melt-rock reaction in creating enriched-MORB mantle sources. Chem. Geol. 532, 119252
    [18]
    Brey, G.P., 1989. Geothermobarometry for lherzolites:experiments from 10 to 60 kb, new thermobarometers and application to natural rocks. Habilitation thesis, University of Mainz, 227pp
    [19]
    Brey, G.P., Weber, R., Nickel, K.G., 1990. Calibration of a belt apparatus to 1800℃ and 6 GPa. J. Geophys. Res. 95 (B10), 15603-15610
    [20]
    Brumm, R., 1998. Die experimentelle Bestimmung von Amphibol/Schmelze-Verteilungskoeffizienten in lamproitischen und lamprophyrischen Systemen. Dr. rer. nat. thesis, University of Göttingen, 132 pp
    [21]
    Cambeses, A., Garcia-Casco, A., Scarrow, J.H., Montero, P., Pérez-Valera, L.A., Bea, F., 2016. Mineralogical evidence for lamproite magma mixing and storage at mantle depths:Socovos fault lamproites, SE Spain. Lithos, 266-267, 182-201
    [22]
    Carlson, R.W., Irving, A.J., 1994. Depletion and enrichment history of subcontinental lithospheric mantle:An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci. Lett. 126 (4), 457-472
    [23]
    Carlson, R.W., Araujo, A.L.N., Junqueira-Brod, T.C., Gaspar, J.C., Brod, J.A., Petrinovic, I.A., Hollanda, M.H.B.M., Pimentel, M.M., Sichel, S., 2007. Chemical and isotopic relationships between peridotite xenoliths and mafic-ultrapotassic rocks from Southern Brazil. Chem. Geol. 242 (3-4), 415-434
    [24]
    Carswell, D.A., 1975. Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys. Chem. Earth 9, 417-429
    [25]
    Casalini, M., Avanzinelli, R., Tommasini, S., Natali, C., Bianchini, G., Prelević, D., Mattei, M., Conticelli, S., 2021. Petrogenesis of Mediterranean lamproites and associated rocks:the role of overprinted metasomatic events in the post-collisional lithospheric upper mantle. Geol. Soc. Lond. Spec. Publ. SP513-2021-2036.
    [26]
    Chen, S., O'Reilly, S. Y., Zhou, X., Griffin, W.L., Zhang, G., Sun, M., Feng, J., Zhang, M., 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China:evidence from xenoliths. Lithos 56 (4), 267-301
    [27]
    Choi, E., Fiorentini, M.L., Giuliani, A., Foley, S.F., Maas, R., Taylor, W.R., 2020. Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Res. 338, 105550
    [28]
    Choi, E., Fiorentini, M.L., Giuliani, A., Foley, S.F., Maas, R., Graham, S., 2021. Petrogenesis of Proterozoic alkaline ultramafic rocks in the Yilgarn Craton, Western Australia. Gondwana Res. 93, 197-217
    [29]
    Coban, H., Flower, M.F.J., 2003. Late Pliocene lamproites from Bucak, Isparta (southwestern Turkey):implications for mantle "wedge" evolution during Africa-Anatolian plate convergence. J. Asian Earth Sci. 29, 160-176
    [30]
    Coban, H., Flower, M.F.J., 2006. Mineral phase compositions in silica-undersaturated "leucite" lamproites from the Bucak area. Isparta, SW Turkey. Lithos 89, 275-299
    [31]
    Coe, N., le Roex, A., Gurney, J., Pearson, D. G., Nowell, G., 2008. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa:constraints from whole rock geochemistry. Contrib. Mineral. Petrol. 156 (5), 627-652
    [32]
    Conceiçao, R.V., Green, D.H., 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite. Lithos 72, 209-229
    [33]
    Condamine, P., Médard, E., 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa:implications for potassic magmatism. Earth Planet Sci. Lett. 397, 80-92
    [34]
    Condamine, P., Médard, E., Devidal, J.L., 2016. Experimental melting of phlogopite-peridotite in the garnet stability field. Contrib. Mineral. Petrol. 171 (11), 1-26
    [35]
    Conticelli, S., Peccerillo, A., 1990. Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of central Italy. Lithos 24, 305-322
    [36]
    Conticelli, S., Manetti, P., Menichetti, S., 1992. Mineralogy, geochemistry and Sr-isotopes in orendites from South Tuscany, Italy:constraints on their genesis and evolution. Eur. J. Mineral. 4, 1359-1375
    [37]
    Contini, S., Venturelli, G., Toscani, L., Capedri, S., Barbieri, M., 1993. Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain. Mineral. Mag. 57, 203-216
    [38]
    Dautria, J.M., Liotard, J.M., Cabanes, N., Girod, M., Briqueu, L., 1987. Amphibole-rich xenoliths and host alkali basalts:petrogenetic constraints and implications on the recent evolution of the upper mantle beneath Ahaggar (central Sahara, southern Algeria). Contrib. Mineral. Petrol. 95, 133-144
    [39]
    Davies, D.R., Rawlinson, N., Iaffaldano, G., Campbell, I.H., 2015. Lithospheric controls on magma composition along Earth's longest hotspot track. Nature 525, 511-514
    [40]
    Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., Pearson, D.G., 2006. Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of the Aldan Shield lamproites. J. Petrol. 47, 1119-1146
    [41]
    Dawson, J.B., 1984. Contrasting types of upper mantle metasomatism. In:Kornprobst, J. (Ed.), Kimberites II. Mantle and Crust-Mantle Relationships. Elsevier, Amsterdam, pp. 289-294
    [42]
    Dawson, J.B., 1987. The MARID suite of xenoliths in kimberlite:relationship to veined and metasomatized peridotite xenoliths. In:Nixon, P.H. (Ed.), Mantle Xenoliths. Wiley, London, pp. 465-473
    [43]
    Dawson, J.B., Hawthorne, J.B., 1970. Intrusion features of some hypabyssal South African kimberlites. Bull. Volcanol. 34, 740-757
    [44]
    Dawson, J.B., Hawthorne, J.B., 1973. Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J. Geol. Soc. Lond. 129, 61-85
    [45]
    Dawson, J.B., Powell, D.G., 1969. Mica in the upper mantle. Contrib. Mineral. Petrol. 22, 233-237
    [46]
    Dawson, J.B., Smith, J.V., 1977. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 44, 309-323
    [47]
    Dawson, J.B., Pinkerton, H., Norton, G.E., Pyle, D.M., Browning, P., Kackson, D., Fallick, A.E., 1995. Petrology and geochemistry of Oldoinyo Lengai lavas extruded in November 1988:magma source, ascent and crystallization. In:Bell, K., Keller, J. (Eds.), Carbonatite Volcanism, Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. Springer, Berlin, pp.47-69
    [48]
    Dawson, J.B., Steele, I.M., Smith, J.V., Rivers, M.L., 1996. Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineral. Mag. 60, 415-425
    [49]
    Delaney, J.S., Smith, J.V., Carswell, D.A., Dawson, J.B., 1980. Chemistry of micas from kimberlites and xenoliths-II. Primary- and secondary-textured micas from peridotite xenoliths. Geochim. Cosmochim. Acta 44, 857-872
    [50]
    Eby, G.N., Lloyd, F.E., Woolley, A.R., 2009. Geochemistry and petrogenesis of the Fort Portal, Uganda, extrusive carbonatite. Lithos 113, 785-800
    [51]
    Edgar, A.D., Lloyd, F.E., Vukadinovic, D., 1994. The role of fluorine in the evolution of ultrapotassic magmas. Mineral. Petrol. 51, 173-193
    [52]
    Elkins-Tanton, L.T., Grove, T.L., 2003. Evidence for deep melting of hydrous metasomatized mantle:Pliocene high-potassium magmas from the Sierra Nevadas. J. Geophys. Res. 108 (B7), 2350
    [53]
    Ellam, R.M., Cox, K.G., 1989. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet Sci. Lett. 105, 330-342
    [54]
    Ellis, D.J., 1976. High pressure cognate inclusions in the Newer Volcanics of Victoria. Contrib. Mineral. Petrol. 58, 149-180
    [55]
    Erlank, A.J., Rickard, R.S., 1977. Potassic richterite-bearing peridotites from kimberlite and the evidence they provide for upper mantle metasomatism. International Kimberlite Conference, Extended Abstracts, 2, 93-95
    [56]
    Erlank, A.J., Waters, F.G., Hawkesworth, C.J., Haggerty, S.E., Allsopp, H.L., Rickard, R.S., Menzies, M.A., 1987. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In:Menzies, M.-A., Hawkesworth, C.J. (Eds.), Mantle Metasomatism. Academic Press, London, pp. 221-311
    [57]
    Ersoy, Y., Helvaci, C., 2007. Stratigraphy and geochemical features of the early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, western Anatolia, Turkey. Turk. J. Earth Sci. 16, 117-139
    [58]
    Ersoy, Y., Helvaci, C., Sözbilir, H., Erkül, F., Bozkurt, E., 2008. A geochemical approach to Neogene-Quaternary volcanic activity of Western Anatolia:an example of episodic bimodal volcanism within the Selendi Basin, Turkey. Chem. Geol. 255, 265-282
    [59]
    Ersoy, Y., Palmer, M.R., Uysal, I.T., Gündogan, I., 2014. Geochemistry and petrology of the early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. J. Volcanol. Geotherm. Res. 283, 143-158
    [60]
    Falloon, T.J., Green, D.H., Danyushevsky, L.V., Faul, U.H., 1999. Peridotite melting at 1.0 and 1.5 Gpa:an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J. Petrol. 40, 1343-1375
    [61]
    Fan, W., Jiang, N., Hu, J., Liu, D., Zhao, L., Li, T., 2021. A metasomatized 18O-rich veined lithospheric mantle source for ultrapotassic magmas. Lithos 382-383, 105964
    [62]
    Fitzpayne, A., Giuliani, A., Hergt, J., Phillips, D., Janney, P., 2018. New geochemical constraints on the origins of MARID and PIC rocks:implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 318-319, 478-493
    [63]
    Foden, J.D., Green, D.H., 1992. Possible role of amphibole in the origin of andesite:some experimental and natural evidence. Contrib. Mineral. Petrol. 109, 479-493
    [64]
    Förster, M.W., Prelevic, D., Schmück, H.R., Buhre, S., Veter, M., Mertz-Kraus, R., Foley, S.F., Jacob, D.E., 2017. Melting and dynamic metasomatism of mixed harzburgite+glimmerite mantle source:implications for the origin of orogenic potassic magmas. Chem. Geol. 455, 182-191
    [65]
    Förster, M.W., Prelevic, D., Schmück, H.R., Buhre, S., Marschall, H.R., Mertz-Kraus, R., Jacob, D.E., 2018. Melting phlogopite-rich MARID:lamproites and the role of alkalis in olivine-liquid partitioning. Chem. Geol. 476, 429-440
    [66]
    Förster, M.W., Prelevic, D., Buhre, S., Mertz-Kraus, R., Foley, S.F., 2019. An experimental study of the role of partial melts of sediments versus mantle melts as sources of potassic magmatism. J. Asian Earth Sci. 177, 76-88
    [67]
    Foley, S.F., 1989. Experimental constraints on phlogopite chemistry in lamproites:1. The effect of water activity and oxygen fugacity. Eur. J. Mineral. 1, 411-426
    [68]
    Foley, S.F., 1990. A review and assessment of experiments on kimberlites, lamproites and lamprophyres as a guide to their origin. Proc. Indian Acad. Sci. 99, 57-80
    [69]
    Foley, S., 1991. High-pressure stability of the fluor- and hydroxy end-members of pargasite and K-richterite. Geochim. Cosmochim. Acta 55, 2689-2694
    [70]
    Foley, S., 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435-453
    [71]
    Foley, S., 1993. An experimental study of olivine lamproite-first results from the diamond stability field. Geochim. Cosmochim. Acta 57, 483-489
    [72]
    Foley, S.F., 2011. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52, 1363-1391
    [73]
    Foley, S.F., Andronikov, A.V., 2003. The genesis of ultramafic lamprophyres. 8th International Kimberlite Conference, Extended Abstracts, Victoria, Canada.
    [74]
    Foley, S.F., Fischer, T.P., 2017. The essential role of continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897-902
    [75]
    Foley, S.F., Jenner, G.A., 2004. Trace element partitioning in lamproitic magmas-the Gaussberg olivine leucitite. Lithos 75, 19-38
    [76]
    Foley, S.F., Pertermann, M., 2021. Dynamic metasomatism experiments investigating the interaction between migrating potassic melt and garnet peridotite. Geosciences 11, 432
    [77]
    Foley, S.F., Wheller, G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks:the role of residual titanates. Chem. Geol. 85, 1-18
    [78]
    Foley, S.F., Taylor, W.R., Green, D.H., 1986. The effect of fluorine on phase relationships in the system KalSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib. Mineral. Petrol. 93, 46-55
    [79]
    Foley, S.F., Venturelli, G., Green, D.H., Toscani, L., 1987. The ultrapotassic rocks:characteristics, classification and constraints for petrogenetic models. Earth-Sci. Rev. 24, 81-134
    [80]
    Foley, S.F., Musselwhite, D.S., van der Laan, S.R., 1999. Melt compositions from ultramafic vein assemblages in the lithospheric mantle:a comparison of cratonic and non-cratonic settings. Proceedings of Cape Town Kimberlite Conference, Red Roof Publishers, Cape Town, J.B. Dawson volume, pp.238-246.
    [81]
    Foley, S.F., Petibon, C.M., Jenner, G.A., Kjarsgaard, B.A., 2001. High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism:an origin for Th/U disequilibrium in mantle melts? Terr. Nova 13, 104-109
    [82]
    Foley, S.F., Andronikov, A.V., Melzer, S., 2002. Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineral. Petrol. 74, 361-384
    [83]
    Foley, S.F., Andronikov, A.V., Jacob, D.E., Melzer, S., 2006. Spinel+garnet lherzolites from the Jetty Peninsula, East Antarctica:mineralogical features and geotherms in the mantle beneath a developing rift. Geochim. Cosmochim. Acta 70, 3096-3120
    [84]
    Foley, S.F., Ezad, I.S., van der Laan, S.R., 2022. Melting of hydrous pyroxenite assemblages with alkali amphiboles in the continental mantle lithosphere. Part 2:Trace element compositions of melts and minerals. Unpubl. Manuscript.
    [85]
    Fraser, K.J., Hawkesworth, C.J., 1992. The petrogenesis of Group 2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos 28, 327-345
    [86]
    Fritschle, T., Prelevic, D., Foley, S.F., Jacob, D.E., 2013. Petrological characterization of the mantle source of Mediterranean lamproites:indications from major and trace elements of phlogopites. Chem. Geol. 353, 267-279
    [87]
    Funk, S.P., Luth, R.W., 2013. Melting phase relations of a mica-cliopyroxenite from the Milk River area, southern Alberta, Canada. Contrib. Mineral. Petrol. 166, 393-409
    [88]
    Galloway, M., Nowicki, T.E., van Coller, B., Mukodzani, B., Siemens, K., Hetman, C.M., Webb, K., Gurney, J.J., 2009. Constraining kimberlite geology through integration of geophysical, geological and geochemical methods:a case study of the Mothae kimberlite, northern Lesotho. Lithos 112(S1), 130-141
    [89]
    Gibson, S.A., Malarkey, J., Day, J.A., 2008. Melt depletion and enrichment beneath the western Kaapvaal craton:evidence from Finsch peridotite xenoliths. J. Petrol. 49, 1817-1852
    [90]
    Giebel, R.J., Marks, M.A.W., Gauert, C.D.K., Markl, G., 2019. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 324-325, 89-104
    [91]
    Giuliani, A., Phillips, D., Woodhead, J.D., Kamenetsky, V.S., Fiorentini, M.L., Maas, R., Soltys, A., Armstrong, R.A., 2015. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Nat. Commun. 6, 6837
    [92]
    Gilbert, M.C., Helz, R.T., Popp, R.K., Spear, F.S., 1982. Experimental studies of amphibole stability. Rev. Mineral. 9B, 229-353
    [93]
    Green, D.H., 1971. Composition of basaltic magmas as indicators of conditions of origin:application to oceanic volcanism. Philos. Trans. R. Soc. Lond., Ser. A 268, 707-725
    [94]
    Gregoire, M., Bell, D.R., Le Roex, A.P., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths:their classification and their relationship to phlogopite-bearing peridotites and kimberlties revisited. Contrib. Mineral. Petrol. 142, 603-625
    [95]
    Grütter, H.S., 2009. Pyroxene xenocryst geotherms:techniques and applications. Lithos 112(S2), 1167-1178
    [96]
    Gupta, A.K., Le Maitre, R.W., Haukka, M.T., Yagi, K., 1983. Geochemical studies on the carbonated apatite glimmerites from Damodar Valley, India. Proceedings of the Japanese Academy, Series B, 59, 113-116
    [97]
    Gupta, A.K., Chattopadhyay, B., Fyfe, W.S., Powell, M., 2002. Experimental studies on three potassium-rich ultramafic rocks from Damodar Valley, East India. Mineral. Petrol. 74, 343-360
    [98]
    Guzmics, T., Mitchell, R.H., Szabo, C., Berkesi, M., Milke, R., Bani, R., 2011. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania:melt evolution and petrogenesis. Contrib. Mineral. Petrol. 166, 177-196
    [99]
    Haggerty, S.E., 1983. The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa:implications for metasomatism in the upper mantle. Geochim. Cosmochim. Acta 47, 1833-1854
    [100]
    Harte, B., Hunter, R.H., Kinny, P.D., 1987. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Philos. Trans. R. Soc. Lond. Ser. A 342, 1-21
    [101]
    Harte, B., Cox, K.G., Gurney, J.J., 1975. Petrography and geological history of upper mantle xenoliths from the Matsoku kimberlite pipe. Phys. Chem. Earth 9, 477-506
    [102]
    Harte, B., Winterburn, P.A., Gurney, J.J., 1987. Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe Lesotho. In:Menzies, M.A., Hawkesworth, C.J. (Eds.), Mantle metasomatism. Academic press, London, pp. 145-220
    [103]
    Hecker, J.G., Marks, M.A.W., Wenzel, T., Markl, G., 2020. Halogens in amphibole and mica from mantle xenoliths:implications for the halogen distribution and halogen budget of the metasomatized continental lithosphere. Am. Mineral. 105, 781-794
    [104]
    Hermann, J., Spandler, C.J., 2008. Sediment melts at sub-arc depths:an experimental study. J. Petrol. 49, 717-740
    [105]
    Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures:determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci. Lett. 114, 477-489
    [106]
    Howarth, G.H., Skinner, E.M.W., Prevec, S.A., 2011. Petrology of the hypabyssal kimberlite of the Kroonstad Group II kimberlite (orangeite) cluster, South Africa:evolution of the magma within the cluster. Lithos 125, 795-808
    [107]
    Howarth, G.H., Marsh, J., Duncan, A., Harris, C., Le Roux, P., Heinonen, J., Maurel, O.G., 2021. Unravelling the effects of crustal assimilation versus mantle source heterogeneity in Tuli basin picrites, Karoo LIP. Goldschmidt 2021 Abstract, Lyon, France.
    [108]
    Hwang, P., Taylor, W.R., Rock, N.M.S., Ramsay, R.R., 1994. Mineralogy, geochemistry and petrogenesis of the Metters Bore No.1 lamproite pipe, Calwynyardah Field, West Kimberley Province, Western Australia. Mineral. Petrol. 51, 195-226
    [109]
    Irving, A.J., 1980. Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. Am. J. Sci. 280A, 389-426
    [110]
    Irving, A.J., Green, D.H., 2008, Phase relationships of hydrous alkali magmas at high pressures:production of nepheline hawaiitic to mugearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle. J. Petrol. 49, 741-756
    [111]
    Jaques, A.L., Foley, S.F., 2018. Insights into the petrogenesis of West Kimberley lamproites from trace elements in olivine. Mineral. Petrol. 112, 519-537
    [112]
    Jaques, A.L., Lewis, J.D., Smith, C.B., Gregory, G.P., Fergsuon, J., Chappell, B.W., McCulloch, M.T., 1984. The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In:Kornprobst, J. (Ed.), Kimberlites 1:kimberlites and related rocks. Elsevier, Amsterdam, pp. 225-254
    [113]
    Jaques, A.L., Lewis, J.D., Smith, C.B., 1986. The kimberlites and lamproites of Western Australia. Geol. Survey Western Australia Bull. 132, 268pp.
    [114]
    Johannes, W., Bell, P.M., Boettcher, A.L., Chapman, D.W., Newton, R.C., Seifert, F., 1971. An interlaboratory comparison of piston-cylinder pressure calibration using the albite breakdown reaction. Contrib. Mineral. Petrol. 32, 24-38
    [115]
    Jones, A.P., Smith, J.V., Dawson, J.B., 1982. Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa. J. Geol. 90, 435-453
    [116]
    Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P., 2009. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada:comparisons to a global database and applications to the parent magma problem. Lithos 112(S1), 236-248
    [117]
    Kogiso, T., Hirshcmann, M.M., Pertermann, M., 2004. High-pressure partial melting of mafic lithologies in the mantle. J. Petrol. 45, 2407-2422
    [118]
    Konzett, J., 1997. Phase relations and chemistry of Ti-rich K-richterite-bearing mantle assemblages:an experimental study to 8.0 Gpa in a Ti-KNCMASH system. Contrib. Mineral. Petrol. 128, 385-404
    [119]
    Konzett, K., Ulmer, P., 1999. The stability of hydrous potassic phases in lherzolitic mantle-an experimental study to 9.5 GPa in simplified and natural bulk compositions. J. Petrol. 40, 629-652
    [120]
    Konzett, J., Sweeney, R.J., Thompson, A.B., Ulmer, P., 1997. Potassium amphibole stability in the upper mantle:an experimental study in a peralkaline KNCMASH system to 8.5 GPa. J. Petrol. 38, 537-568
    [121]
    Kravchenko, S.M., 2003. Porphyritic potassium-rich alkaline-ultrabasic rocks of the central Tomtor Massif (Arctic Siberia):carbonatized lamproites. Russ. Geol. Geophys. 44, 906-918
    [122]
    Kuehner, S.M., Edgar, A.D., Arima, M., 1981. Petrogenesis of ultrapotassic rocks from the Leucite Hills, Wyoming. Am. Mineral. 66, 663-677
    [123]
    Kushiro, I., Erlank, A.J., 1970. Stability of Potassic Richterite. Carnegie Institution of Washington, Yearbook 68, 231-233.
    [124]
    Kushiro, I, 1975. On the nature of silicate melt and its significance in magma genesis:regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. American Journal of Science 275, 411-431
    [125]
    Kushiro, I., Syono, Y., Akimoto, S., 1967. Stability of phlogopite at high pressures and possible presence of phlogopite in the Earth's upper mantle. Earth Planet Sci. Lett. 3, 197-203
    [126]
    Lambart, S., Laporte, D., Schiano, P., 2013. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts:review of the experimental constraints. Lithos 160-161, 14-36
    [127]
    Lambert, I.B., Wyllie, P.J., 1968. Stability of hornblende and a model for the low velocity zone. Nature 219, 1240-1241
    [128]
    Lara, M., Dasgupta, R., 2020. Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt-implications for subduction zone magmatism. Geochim. Cosmochim. Acta 290, 137-161
    [129]
    Lausen, C., 1927. The occurrence of olivine bombs near Globe, Arizona. Am. J. Sci. 14, 293-306
    [130]
    LeRoux, A.P., Bell, D.R., Davis, P., 2003. Petrogenesis of Group I kimberlites from Kimberley, South Africa:evidence from bulk-rock geochemistry. J. Petrol. 44, 2261-2286
    [131]
    Link, K., Barifaijo, E., Tiberindwa, J., Foley, S.F., 2008. Veined pyroxenite xenoliths from the kamafugites in the Toro-Ankole region of western Uganda:a window to a rift-related mantle. 9th International Kimberlite Conference, Extended Abstract 00403, Victoria.
    [132]
    Litasov, K.D., Foley, S.F., Litasov, Y.D., 2000. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia):evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos, 54, 83-113
    [133]
    Liu, X., O'Neill, H.St.C., 2007. Effects of P2O5 and TiO2 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2 at 1.1 GPa. Can. Mineral. 45, 649-655
    [134]
    Liu, Z.R., Shea, J.J., Foley, S.F., Bussweiler, Y., Rohrbach, A., Klemme, S., 2020. Clarifying source assemblages and metasomatic agents for basaltic rocks in southeastern Australia using olivine phenocryst compositions. Lithos 390-391, 106122
    [135]
    Lloyd, F.E., 1981. Upper mantle metasomatism beneath a continental rift:clinopyroxenes in alkali mafic lavas and nodules from South West Uganda. Mineral. Mag. 44, 315-323
    [136]
    Lloyd, F.E., Bailey, D.K., 1975. Light element metasomatism of the continental mantle:the evidence and the consequences. Phys. Chem. Earth 9, 389-416
    [137]
    Lloyd, F.E., Arima, M., Edgar, A.D., 1985. Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda:an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib. Mineral. Petrol. 91, 321-329
    [138]
    Lopez-Ruiz, J., Rodriguez-Badiola, E., 1967. La región volcánica neogena del sureste de España. Estud. Geo. 36, 5-63
    [139]
    Luhr, J.F., Aranda-Gomez, J.J., 1997. Mexican peridotite xenoliths and tectonic terranes:correlations among vent location, texture, temperature, pressure, and oxygen fugacity. Journal of Petrology 38, 1075-1112
    [140]
    Luth, R.W., 1997. Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am. Mineral. 82, 1198-1209
    [141]
    Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y., Wood, B.J., 2007. Diamond, sub-calcic garnet, and mantle metasomatism:kimberlite sampling patterns define the link. Geology 35, 339-342
    [142]
    Mallik, A., Dasgupta, R., Tsuno, K., Nelson, J., 2016. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochim. Cosmochim. Acta 195, 226-243
    [143]
    Matchan, E., Hergt, J., Phillips, D., Shee, S., 2009. The geochemistry, petrogenesis and age of an unusual alkaline intrusion in the western Pilbara craton, Western Australia. Lithos 112, 419-428
    [144]
    McKenzie, D.P., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci. Lett. 95, 53-72
    [145]
    Médard, E., Schmidt, M.W., Schiano, P., 2004. Liquidus surfaces of ultracalcic primitive melts:formation conditions and sources. Contrib. Mineral. Petrol. 148, 201-215
    [146]
    Melzer, S., Foley, S.F., 2000. Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6-KAlSiO4-Mg2SiO4-SiO2-F2O-1 at 1 bar and 18 kbar. Contrib. Mineral. Petrol. 138, 186-197
    [147]
    Mengel, K., Green, D.H., 1989. Stability of amphibole and phlogopite in metasomatized peridotite udner water-saturated and water-undersaturated conditions. In:Ross, J. (Ed.), Kimberlites and Related Rocks. Blackwell, Melbourne, 1, 571-581.
    [148]
    Mirnejad, H., Bell, K., 2006. Origin and source evolution of the Leucite Hills lamproites:evidence from Sr-Nd-Pb-O isotopic compositions. J. Petrol. 47, 2463-2489
    [149]
    Mitchell, R.H., 1985. A review of the mineralogy of lamproites. Transactions of the Geological Society of South Africa 88, 411-437
    [150]
    Mitchell, R.H., 1995. Kimberlites, Orangeites and Related Rocks. Plenum Press, New York and London, 410pp
    [151]
    Mitchell, R.H., 2020. Igneous rock associations 26. Lamproties, exotic potassic alkaline rocks:a review of their nomenclature, characterization and origins. Geosci. Can. 47, 119-142
    [152]
    Mitchell, R.H., Bergman, S.C., 1991. Petrology of Lamproites. Plenum Press, New York, 447pp
    [153]
    Mitchell, R.H., Vladykin, N.V., 1993. Rare earth element-bearing tausonite and potassium barium titanates from the Little Murun potassic alkaline complex, Yakutia, Siberia. Mineral. Mag. 57, 651-664
    [154]
    Modreski, P.J., Boettcher, A.L., 1972. The stability of phlogopite+ enstatite at high pressures:a model for micas in the interior of the Earth. Am. J. Sci. 272, 852-869
    [155]
    Modreski, P.J., Boettcher, A.L., 1973. Phase relationships of phlogopite in the system K2O-MgO-CaO-Al2O3-SiO2-H2O to 35 kilobars:a better model for micas in the interior of the Earth. Am. J. Sci. 273, 385-414
    [156]
    Morishita, T., Hattori, K.H., Terada, K., Matsumoto, T., Yamamoto, K., Takebe, M., Ishida, Y., Tamura, A., Arai, S., 2008. Geochemistry of apatite-rich layers in the Finero phlogopite-peridotite massif (Italian Western Alps) and ion microprobe dating of apatite. Chem. Geol. 251, 99-111
    [157]
    Mues-Schumacher, U., Keller, J., Kononova, V., Suddaby, P., 1995. Petrology and age determinations of the ultramafic (lamproitic) rocks from the Yakokut Complex, Aldan Shield, eastern Siberia. Mineral. Mag. 59, 409-428
    [158]
    Muirhead, J.D., Fischer, T.P., Oliva, S.J., Laizer, A., van Wijk, J., Currie, C.A., Lee, H., Judd, E.J., Kazimoto, E., Sano, Y., Takahata, N., Tiberi, C., Foley, S.F., Dufek, J., Reiss, M.C., Ebinger, C.J., 2020. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature 582, 67-72
    [159]
    Müntener, O., Piccardo, G., 2003. Melt migration in ophiolitic peridotites:the message from Alpine-Apennine peridotites and implications for embryonic ocean basins. Geol. Soc. Lond. Spec. Publ. 218, 69-89
    [160]
    Müntener, O., Pettke, T., Desmurs, L., Meier, M., Schaltegger, U., 2004. Refertilization of mantle peridotite in embryonic ocean basins:trace element and Nd isotopic evidence and implications for crust-mantle relationships. Earth Planet Sci. Lett. 221, 293-308
    [161]
    Müntener, O., Piccardo, G., Polino, R., Zanetti, A., 2005. Revisiting the Lanzo peridotite (NW-Italy):'asthenospherization' of ancient lithospheric mantle. Ofioliti 30, 111-124
    [162]
    Muravyeva, N.S., Senin, V.G., 2018. Xenoliths from Bunyaraguru volcanic field:some insights into lithology of east African Rift upper mantle. Lithos 296-299, 17-36
    [163]
    Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antarctica:possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001
    [164]
    Novella, D., Frost, D.J., 2014. The composition of hydrous partial melts of garnet peridotite at 6 GPa:implications for the origin of Group II kimberlites. J. Petrol. 55, 2097-2124
    [165]
    O'Reilly, S.Y., Griffin, W.L., 1988. Mantle metasomatism beneath Western Victoria, Australia:1. Metasomatic processes in Cr-diopside lherzolites. Geochim. Cosmochim. Acta 52, 433-447
    [166]
    O'Reilly, S.Y., Griffin W.L., 2000. Apatite in the mantle:implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232
    [167]
    O'Reilly, S.Y., Griffin W.L., 2013. Mantle metasomatism. In:Harlov, D.E., Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock. Springer-Verlag, Heidelberg, 471-533
    [168]
    Oxburgh, E.R., 1964. Petrological evidence for the presence of amphibole in the upper mantle and its petrogenetic and geophysical implications. Geol. Mag. 101, 1-19
    [169]
    Palmer, M.R., Ersoy, E.Y., Akal, C., Uysal, I., Genc, S.C., Banks, L.A., Cooper, M.J., Milton, J.A., Zhao, K.D., 2019. A short, sharp pulse of potassium-rich volcanism during continental collision and subduction. Geology 47, 1079-1082
    [170]
    Panina, L.I., 1997. Low-titanium Aldan lamproites (Siberia):melt inclusions in minerals. Russ. Geol. Geophys. 38, 118-127
    [171]
    Pearson, D.G., Woodhead, J., Janney, P.E., 2019. Kimberlites as geochemical probes of Earth's mantle. Elements 15, 387-392
    [172]
    Peccerillo, A., Poli, G., Serri, G., 1988. Petrogenesis of orenditic and kamafugitic rocks from central Italy. Can. Mineral. 26, 45-65
    [173]
    Perez-Valera, L.A., Rosenbaum, G., Sanchez-Gomez, M., Azor, A., Fernandez-Soler, K., Perez-Valera, F., Vasconcelos, P.M.P., 2013. Age distribution of lamproites along the Socovos Fault (southern Spain) and lithospheric scale tearing. Lithos 180-181, 252-263
    [174]
    Pertermann, M., Hirschmann, M.M., 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa:constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 108, 2125
    [175]
    Pilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916-919
    [176]
    Pilet, S., Abe, N., Rochat, L., Kaczmarek, M-A., Hirano, N., Machida, S., Buchs, D.M., Baumgartner, P.O., Müntener, O., 2016. Pre-subduction metasomatic enrichment od the oceanic lithosphere induced by plate flexure. Nat. Geosci. 9, 898-903
    [177]
    Pintér, Z., Foley, S.F., Yaxley, G.M., Rosenthal, A., Rapp, R.P., Lanati, A.W., Rushmer, T., 2021. Experimental investigation of the composition of incipient melts in upper mantle peridotites in the presence of CO2 and H2O. Lithos 396-397, 106224
    [178]
    Ponce-Peña, P., Poisot, M., Rodriguez-Pulido, A., Gonzalez-Lozano, M.A., 2019. Crystalline structure, synthesis, properties and applications of potassium hexatitanite:a review. Materials 12, 4132
    [179]
    Prelevic, D., Foley, S.F., Romer, R.L., Conticelli, S., 2008. Mediterranean tertiary lamproites derived from multiple source components in postcollisional dynamics. Geochimica et Cosmochimica Acta 72, 2125-2156
    [180]
    Prelevic, D., Foley, S.F., Romer, R.L., Cvetkovic, V., Downes, H., 2005. Tertiary ultrapotassic volcanism Serbia:constraints on petrogenesis and mantle source characteristics. J. Petrol. 46, 1443-1487
    [181]
    Prelevic, D., Akal, C., Foley, S.F., Romer, R.L., Stracke, A., van den Bogaard, P., 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle:the case of southwestern Anatolia, Turkey. J. Petrol. 53, 1019-1055
    [182]
    Prelevic, D., Jacob, D.E., Foley, S.F., 2013. Recycling plus:a new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth Planet Sci. Lett. 362, 187-197
    [183]
    Prelevic, D., Akal, C., Romer, R.L., Mertz-Kraus, R., Helvaci, C., 2015. Magmatic response to slab tearing:constraints from the Afyon alkaline volcanic complex, Western Turkey. J. Petrol. 56, 527-562
    [184]
    Rehfeldt, T., Foley, S.F., Carlson, R.W., Lowry, D., Jacob, D.E., 2008. Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim. Cosmochim. Acta 72, 5722-5756
    [185]
    Rosenthal, A., Foley, S.F., Pearson, D.G., Nowell, G.M., Tappe, S., 2009. Magmatic evolution at the propagating tip of a continental rift-a geochemical study of primitive alkaline volcanic rocks of the western branch of the East African Rift. Earth Planet Sci. Lett. 284, 236-248
    [186]
    Rudnick, R.L., McDonough, W.F., Chappell, B.W., 1993. Carbonatite metasomatism in the northern Tanzanian mantle-petrographic and geochemical characteristics. Earth Planet Sci. Lett. 114, 463-475
    [187]
    Safonov, O.G., Butvina, V.G., 2013. Interaction of model peridotite with H2O-KCl fluid:experiment at 1.9 GPa and its implications for upper mantle metasomatism. Petrology 21, 599-615
    [188]
    Schafer, F.N., Foley, S.F., 2002. The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of peridotite minerals. Contrib. Mineral. Petrol. 143, 254-262
    [189]
    Seggie, A.G., Hannweg, G.W., Colgen, E.A., Smith, C.B., 1999. The geology and geochemistry of the Venetia kimberlite cluster, Northern Province, South Africa. P.H. Nixon Volume, Red Roof Press, Cape Town, pp. 750-756.
    [190]
    Sekine, T., Wyllie, P.J., 1982. The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib. Mineral. Petrol. 81, 190-202
    [191]
    Sekine, T., Wyllie, P.J., 1983. Experimental simulation of mantle hybridization in subduction zones. J. Geol. 91, 511-528
    [192]
    Shea, J.J., Foley, S.F., 2019. Evidence for a carbonatite-influenced source assemblage for intraplatebasalts from the Buckland Volcanic Province, Queensland, Australia. Minerals 9, 546
    [193]
    Sheraton, J.W., 1981. Chemical analyses of rocks from East Antarctica. Bureau of Mineral Resources Record 14, 67-68
    [194]
    Skora, S., Blundy, J.D., 2010. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. J. Petrol. 51, 2211-2243
    [195]
    Smith, J.V., Brennesholtz, R., Dawson, J,B., 1978. Chemistry of micas from kimberlites and xenoliths:I. Micaceous kimberlites. Geochim. Cosmochim. Acta 42, 959-971
    [196]
    Smith, C.B., Gurney, J.J., Skinner, E.M.W., Clement, C.R., Ebrahim, N., 1985. Geochemical character of southern African kimberlites:a new approach based on isotopic constraints. Trans. Geol. Soc. South Afr. 88, 267-280
    [197]
    Soltys, A., Giuliani, A., Phillips, D., JKamenetsky, V.S., Maas, R., Woodhead, J.D., Rodemann, T., 2020. In-situ assimilation of mantle minerals by kimberlitic magmas-direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256-257, 182-196
    [198]
    Soltys, A., Giuliani, A., Phillips, D., Kamenetsky, V.S., Maas, R., Woodhead, J.D., Rodemann, T., 2016. In-situ assimilation of mantle minerals by kimberlite magmas-direct evidence from a garnet wehrlite entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256-257, 182-196
    [199]
    Spandler, C., Yaxley, G.M., Green, D.H., Rosenthal, A., 2008. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600℃ and 3 to 5 GPa. J. Petrol. 49, 771-795
    [200]
    Stamm, N., Schmidt, M.W., Szymanowski, D., von Quadt, A., Mohapi, T., Fourie, A., 2018. Primary petrology, mineralogy and age of the Letseng-le-Terae limberlite (Lesotho, southern Africa) and parental magmas of Group I kimberlites. Contrib. Mineral. Petrol. 173, 76
    [201]
    Sudo, A., Tatsumi, Y., 1990. Phlogopite and K-amphibole in the upper mantle:implication for magma genesis in subduction zones. Geophys. Res. Lett. 17, 29-32
    [202]
    Sweeney, R.J., Thompson, A.B., Ulmer, P., 1993. Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib. Mineral. Petrol. 115, 225-241
    [203]
    Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A., Joyce, N., Hoefs, J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador:a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 47, 1261-1315
    [204]
    Tappe, S., Foley, S.F., Kjarsgaard, B.A., Romer, R.L., Heaman, L.M., Stracke, A., Jenner, G.A., 2008. Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate fusion melting of cratonic MARID-type metasomes. Geochim. Cosmochim. Acta 72, 3258-3286
    [205]
    Tiepolo, M., Zanetti, A., Oberti, R., Brumm, R., Foley, S.F., Vannucci, R., 2003. Trace-element partitioning between synthetic potassic richterites and silicate melts, and contrasts with the partitioning behaviour of pargasites and kaersutites. Eur. J. Mineral. 15, 329-340
    [206]
    Trønnes, R.G., 2002. Stability range and decomposition of potassic richterite and phlogopite end members at 5-15 GPa. Mineral. Petrol. 74, 129-148
    [207]
    Ulmer, P., Sweeney, R.J., 2002. Generation and differentiation of group II kimberlites:constraints from a high-pressure experimental study to 10 GPa. Geochim. Cosmochim. Acta 66, 2139-2153
    [208]
    Varne, R., 1970. Hornblende lherzolite and the upper mantle. Contrib. Mineral. Petrol. 27, 45-51
    [209]
    Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A., Kogarko, L.N., Celestini, S., 1984. The ultrapotassic rocks from southeastern Spain. Lithos 17, 37-54
    [210]
    Venturelli, G., Salvioli Mariani, E., Foley, S.F., Capedri, S., Crawford, A.J., 1988. Petrogenesis and conditions of crystallization of Spanish lamproitic rocks. Can. Mineral. 26, 67-79
    [211]
    Venturelli, G., Capedri, S., Barbieri, M., Toscani, L., Salvioli Mariani, E., Zerbi, M., 1991. The Jumilla lamproite revisited-petrological oddity. Eur. J. Mineral. 3, 123-145
    [212]
    Viljoen, F., Dobbe, R., Smit, B., 2009. Geochemical processes in peridotite xenoliths from the Premier diamond mine, South Africa:evidence for the depletion and refertilization of subcratonic lithosphere. Lithos 112 (S2), 1133-1142
    [213]
    Vladykin, N.V., 1997. Geochemistry and genesis of lamproites of the Aldan Shield. Russ. Geol. Geophys. 38, 128-141
    [214]
    Vladykin, N.V., 2007. Formation types of lamproite complex-systematics and chemistry. In:Vladykin, N.V. (Ed.), Alkaline magmatism, its sources and plumes. Russian Academy of Sciences, Siberian Branch, Irkutsk, 20-44
    [215]
    Wagner, C., Velde, D., 1986. The mineralogy of K-richterite-bearing lamproites. Am. Mineral. 71, 17-37
    [216]
    Wagner, C., Deloule, E., Mokhtari, A., 1996, Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco:mineralogy and D/H isotopic studies. Contrib. Mineral. Petrol. 124, 406-421
    [217]
    Wagner, C., Mokhtari, A., Deloule, E., Chabaux, F., 2003, Carbonatite and alkaline magmatism in Taourirt (Morocco):petrological, geochemical and Sr-Nd isotope characteristics. J. Petrol. 44, 937-965
    [218]
    Walter, M.J., 2003. Melt extraction and compositional variability in mantle lithosphere. Treatise in Geochemistry 2, 363-394
    [219]
    Wang, C., Liang, Y., Dygert, N., Xu, W.L., 2016. Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt:an experimental study. Contrib. Mineral. Petrol. 171, 77
    [220]
    Wang, Y., Foley, S.F., 2020. The role of blueschist stored in shallow lithosphere in the generation of post-collisional orogenic magmas. J. Geophys. Res. 125, e2020JB19910
    [221]
    Wang, Y., Prelevic, D., Buhre, S., Foley, S.F., 2017. Constraints on the sources of post-collisional K-rich magmatism:the roles of continental clastic sediments and terrigenous blueschists. Chem. Geol. 455, 192-207
    [222]
    Wang, Y., Foley, S.F., Buhre, S., Soldner, J., Xu, Y.G., 2021. Origin of potassic post-collisional volcanic rocks in young, shallow, blueschist-rich lithosphere. Sci. Adv. 7, eabc0291
    [223]
    Wass, S.Y., Henderson, P., Elliott, C.J>, 1980. Chemical heterogeneity and metasomatism in the upper mantle:evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Philosophical Transactions of the Royal Society of London, Series A 297, 333-346
    [224]
    Waters, F.G., 1987. A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite. Contrib. Mineral. Petrol. 95, 523-533
    [225]
    Waters, F.G., Erlank, A.J., Daniels, L.R.M., 1989. Contact relationships between MARID rock and metasomatised peridotite in a kimberlite xenolith. Geochem. J. 23, 11-17
    [226]
    Watson, E.B., 1980. Apatite and phosphorus in mantle source regions:an experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth Planet Sci. Lett. 51, 322-335
    [227]
    Watson, E.B., 1982. Melt infiltration ad magma evolution. Geology 10, 236-240
    [228]
    Wendlandt, R.F., Eggler, D.H., 1980. The origins of potassic magmas:2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures. Am. J. Sci. 280, 421-458
    [229]
    White, J.L., Sparks, R.S.J., Bailey, K., Barnett, W.P., Field, M., Windsor, L., 2012. Kimberlite sills and dykes associated with the Wesselton kimberlite pipe, Kimberley, South Africa. S. Afr. J. Geol. 115, 1-32
    [230]
    Witt-Eickschen, G., Kramm, U., 1988. Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contrib. Mineral. Petrol. 131, 258-272
    [231]
    Wölbern, I., Rümpker, G., Link, K., Sodoudi, F., 2012. Melt infiltration of the lower lithosphere beneath the Tanzania craton and the Albertine rift inferred from S receiver functions. Geochem. Geophys. Geosyst. 13 (1), Q0AK08
    [232]
    Woodland, A.B., 2009. Ferric iron contents of clinopyroxene from cratonic mantle and partitioning behaviour with garnet. Lithos 112 (S2), 1143-1149
    [233]
    Wu, F-Y., Mitchell, R.H., Li, Q-L., Sun, J., Liu, C-Z., Yang, Y-H., 2013. In-situ U-Pb age determination and Sr-Nd isotopic analysis of perovskite from the Premier (Cullinan) kimberlite, South Africa. Chem. Geol. 353, 83-95
    [234]
    Yaxley, G.M., Crawford, A.J., Green, D.H., 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci. Lett. 107, 305-317
    [235]
    Yoder, H.S., Kushiro, I., 1969. Melting of a hydrous phase:phlogopite. Am. J. Sci. 267-A, 558-582
    [236]
    Zhang, Y.F., Liang, X., Wang, C., Jin, Z.M., Zhu, L., Gan, W., 2020. Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones. Am. Mineral. 105, 1191-1203
    [237]
    Zhang, Y.S., Hou, T., Veksler, I.V., Lesher, C.E., Namur, O., 2018. Phase equilibria and geochemical constraints on the petrogenesis of high-Ti picrite from the Paleogene East Greenland flood basalt province. Lithos 300-301, 20-32
    [238]
    Zinngrebe, E., 1998. Der Inagli-Dunit (Sibirien):Ein Beispiel für metasomatische Effekte alkaliner Silikatschmelzen in Peridotiten. PhD thesis, Universität Göttingen, 127pp
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return